Conference: Pushing Towards Open-Source AI
会议:推动开源人工智能
基本信息
- 批准号:2335774
- 负责人:
- 金额:$ 4.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This workshop will bring together researchers and practitioners to understand the key challenges in building a robust, open-source ecosystem for generative AI. The technological systems that underlie generative AI differ from other open-source systems and present a unique set of issues. This workshop serves a niche that is not being fulfilled in either the open-source or academic machine learning community alone, and will connect researchers and open-source developers to specifically target core shared challenges. The outcomes of the workshop will serve as a roadmap to foster open-source AI that is safe and equitable and can be deployed to increase American economic growth and worker productivity. Open-source software development contributes to enormous growth in diverse industries across the world. The goal of this workshop proposal is to study how to foster a robust open-source ecosystem for generative AI that is comparable to the general open-source software ecosystem. The technological systems underlying generative AI present novel and complex issues that make it non-trivial to adapt current open-source best practices. Successes of generative AI are also not primarily due to code; they are the product of several factors, including: carefully coordinated data curation, strategically coordinated training runs, tuning with large-amounts of human feedback, and rigorous evaluation on realistic use-cases. The workshop will focus on the following four themes to define and address the core challenges of open-source generative AI: model adaptation for a broader range of users; open ecosystems for human feedback; evaluation of ethical, safe, and accurate systems; and supporting decentralized AI development. The workshop will strive to identify the challenges and opportunities in open-source models for AI development that will serve as a roadmap for the coming years.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本次研讨会将汇集研究人员和从业人员,了解为生成式AI构建一个强大的开源生态系统所面临的关键挑战。生成式人工智能的技术系统与其他开源系统不同,并提出了一系列独特的问题。这个研讨会服务于一个在开源或学术机器学习社区中无法单独实现的利基市场,并将研究人员和开源开发人员联系起来,专门针对核心的共同挑战。研讨会的成果将作为一个路线图,以促进安全和公平的开源人工智能,并可用于提高美国经济增长和工人生产力。开源软件开发为世界各地不同行业的巨大增长做出了贡献。这个研讨会提案的目标是研究如何为生成式人工智能培育一个强大的开源生态系统,与一般的开源软件生态系统相媲美。生成式人工智能的技术系统提出了新颖而复杂的问题,使得适应当前的开源最佳实践变得非常重要。生成式人工智能的成功也不是主要归功于代码;它们是几个因素的产物,包括:精心协调的数据策展,战略协调的训练运行,大量人类反馈的调整,以及对现实用例的严格评估。该研讨会将重点关注以下四个主题,以定义和解决开源生成AI的核心挑战:为更广泛的用户进行模型调整;为人类反馈开放生态系统;评估道德,安全和准确的系统;以及支持去中心化的AI开发。该研讨会将致力于识别人工智能开发开源模型中的挑战和机遇,这将成为未来几年的路线图。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Rush其他文献
Simple and Effective Masked Diffusion Language Models
简单有效的掩蔽扩散语言模型
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
S. Sahoo;Marianne Arriola;Yair Schiff;Aaron Gokaslan;Edgar Marroquin;Justin T Chiu;Alexander Rush;Volodymyr Kuleshov - 通讯作者:
Volodymyr Kuleshov
Alexander Rush的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Rush', 18)}}的其他基金
CAREER: Data-Driven Document Generation
职业:数据驱动文档生成
- 批准号:
1845664 - 财政年份:2019
- 资助金额:
$ 4.81万 - 项目类别:
Continuing Grant
CAREER: Data-Driven Document Generation
职业:数据驱动文档生成
- 批准号:
2037519 - 财政年份:2019
- 资助金额:
$ 4.81万 - 项目类别:
Continuing Grant
相似海外基金
Pushing the envelope: atomic force microscopy imaging of the bacterial outer membrane during growth and division
挑战极限:生长和分裂过程中细菌外膜的原子力显微镜成像
- 批准号:
BB/X007669/1 - 财政年份:2024
- 资助金额:
$ 4.81万 - 项目类别:
Research Grant
Pushing the limits of electronic delocalization in organic molecules
突破有机分子电子离域的极限
- 批准号:
DE240100664 - 财政年份:2024
- 资助金额:
$ 4.81万 - 项目类别:
Discovery Early Career Researcher Award
Pushing the Limits of High-Field Solid-State NMR Technology: Enhancing Applications to Advanced Materials, the Life Sciences and Pharmaceuticals
突破高场固态核磁共振技术的极限:增强先进材料、生命科学和制药的应用
- 批准号:
EP/Z532836/1 - 财政年份:2024
- 资助金额:
$ 4.81万 - 项目类别:
Research Grant
Galactic Outflows: Pushing the Distance Frontiers
银河流出:推动距离边界
- 批准号:
DE240100136 - 财政年份:2024
- 资助金额:
$ 4.81万 - 项目类别:
Discovery Early Career Researcher Award
Pushing the envelope: atomic force microscopy imaging of the bacterial outer membrane during growth and division
挑战极限:生长和分裂过程中细菌外膜的原子力显微镜成像
- 批准号:
BB/X00760X/1 - 财政年份:2024
- 资助金额:
$ 4.81万 - 项目类别:
Research Grant
Development of steady rest that can adjust pushing force based on analysis of grinding stock in cylindrical traverse grinding
基于外圆横动磨削磨削坯料分析的可调节推力中心架的研制
- 批准号:
23K03604 - 财政年份:2023
- 资助金额:
$ 4.81万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Pushing the Practicality of Secure Multiparty Computation
职业:推动安全多方计算的实用性
- 批准号:
2236819 - 财政年份:2023
- 资助金额:
$ 4.81万 - 项目类别:
Continuing Grant
CAREER: Ultrafast Quantum Networks: Pushing the Limits of Photon Production
职业:超快量子网络:突破光子生产的极限
- 批准号:
2239327 - 财政年份:2023
- 资助金额:
$ 4.81万 - 项目类别:
Continuing Grant
Pushing the Envelope: Defining a Cytoskeletal-like Protein Required for Spore Development
突破极限:定义孢子发育所需的类细胞骨架蛋白
- 批准号:
BB/X008533/1 - 财政年份:2023
- 资助金额:
$ 4.81万 - 项目类别:
Research Grant
Pushing wheat yields to a new frontier
将小麦单产推向新境界
- 批准号:
10056573 - 财政年份:2023
- 资助金额:
$ 4.81万 - 项目类别:
Collaborative R&D