EAGER: GOALI: REAL-D Path-Sampling Algorithms to Understand Rare Safety Events and Improve Alarm Systems
EAGER:GOALI:用于了解罕见安全事件并改进警报系统的 REAL-D 路径采样算法
基本信息
- 批准号:1839535
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Chemical manufacturing processes can pose serious hazards, so safety considerations play an important role in their design. To minimize the risk of catastrophic accidents, which can result in loss of human life or major environmental impacts, extensive instrumentation such as control systems, alarms, and safety interlocks, are routinely employed in chemical processes. While such efforts are successful in mitigating the most likely adverse events, it is challenging to anticipate and mitigate the effects of infrequent adverse events in real-time. Importantly, such rare safety events, which have not been considered in plant design, can lead to the most severe consequences. The proposed exploratory research project is a collaboration between a research team from the University of Pennsylvania and an industrial partner, Air Liquide, and aims to understand the pathways leading to rare safety events in chemical manufacturing processes through a combination of process modeling, chemical plant data, and path-sampling algorithms, and to use this understanding to design novel multi-variable alarm systems for the real-time monitoring and prevention of such incidents.To combine process models with path-sampling algorithms, such as Forward Flux Sampling, a simple exothermic continuous stirred-tank reactor (CSTR) model will be employed first. Then, a state-of-the-art model for Air Liquide's realistically complex steam-methane reforming (SMR) process will be studied to obtain an ensemble of rare accident trajectories. By analyzing these trajectories, accident frequencies and durations will be determined, along with secondary process variables, which are likely to play an important role in precipitating accidents. In the vicinity of the most likely rare-event trajectories, actual plant data will be sought with projections obtained using near-miss data in Air Liquide historian databases. The proposed research could lead to the adoption of path-sampling methods to predict rare events in other fields, which are both data-rich and have reliable models available, e.g., in forecasting extreme weather events. The research will be integrated with educational and outreach efforts. The Principal Investigator will incorporate the results of the research in subsequent editions of his widely adopted textbook, "Product and Process Design Principles", which has been used by over 40,000 students worldwide. Finally, there is a plan to develop a hands-on outreach program to mentor underrepresented minority students from local colleges to encourage participation in STEM education.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
化学制造过程可能会造成严重的危害,因此安全考虑在其设计中发挥着重要作用。为了最大限度地减少灾难性事故的风险,这可能导致人类生命损失或重大的环境影响,在化学过程中通常采用大量的仪表,如控制系统,警报和安全联锁。虽然这些努力成功地减轻了最可能的不良事件,但实时预测和减轻罕见不良事件的影响具有挑战性。重要的是,这种罕见的安全事件,在工厂设计中没有考虑到,可能会导致最严重的后果。拟议的探索性研究项目是宾夕法尼亚大学的一个研究小组与工业合作伙伴液化空气公司之间的合作,旨在通过过程建模,化工厂数据和路径采样算法的组合,了解导致化学制造过程中罕见安全事件的途径。并利用这种理解来设计新颖的多变量报警系统,用于实时监控和预防此类事件。将联合收割机过程模型与路径采样算法相结合,例如前向通量采样,首先采用简单的放热连续搅拌釜反应器(CSTR)模型。然后,将研究液化空气公司现实复杂的蒸汽甲烷重整(SMR)过程的最先进模型,以获得罕见事故轨迹的集合。通过分析这些轨迹,事故频率和持续时间将被确定,沿着的二次过程变量,这可能会在促成事故中发挥重要作用。在最有可能的罕见事件轨迹附近,将通过使用液化空气历史数据库中的未遂事故数据获得的预测来寻找实际工厂数据。拟议的研究可能导致采用路径抽样方法来预测其他领域的罕见事件,这些领域既有丰富的数据,又有可靠的模型,例如,极端天气事件的预测。 这项研究将与教育和外联工作相结合。 首席研究员将把研究结果纳入其广泛采用的教科书“产品和工艺设计原理”的后续版本中,该教科书已被全球40,000多名学生使用。最后,还有一项计划是制定一个实践推广计划,指导当地大学中代表性不足的少数民族学生,鼓励他们参与STEM教育。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Understanding rare safety and reliability events using forward-flux sampling
使用前向通量采样了解罕见的安全性和可靠性事件
- DOI:10.1016/j.compchemeng.2021.107387
- 发表时间:2021
- 期刊:
- 影响因子:4.3
- 作者:Sudarshan, Vikram;Seider, Warren D.;Patel, Amish J.;Arbogast, Jeffery E.
- 通讯作者:Arbogast, Jeffery E.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Warren Seider其他文献
Warren Seider的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Warren Seider', 18)}}的其他基金
Path Sampling and Dynamic Risk Analysis
路径采样和动态风险分析
- 批准号:
2220276 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
GOALI: Collaborative Research: Model-Predictive Safety Systems for Predictive Detection of Operation Hazards
GOALI:协作研究:用于预测检测操作危险的模型预测安全系统
- 批准号:
1704833 - 财政年份:2017
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: GOALI: Synergistic Improvement of Process Safety and Product Quality Using Process Databases
合作研究:GOALI:使用过程数据库协同改进过程安全和产品质量
- 批准号:
1066475 - 财政年份:2011
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Dynamic Risk Assessment of Inherently Safe Chemical Processes: Using Accident Precursor Data
本质安全化学过程的动态风险评估:使用事故前兆数据
- 批准号:
0553941 - 财政年份:2006
- 资助金额:
$ 15万 - 项目类别:
Continuing grant
Support For International Federation of Automatic Control (IFAC) Symposium on Dynamics and Control of Process Systems (DYCOPS-7); July 5-7, 2004; Cambridge, MA
支持国际自动控制联合会 (IFAC) 过程系统动力学与控制研讨会 (DYCOPS-7);
- 批准号:
0432234 - 财政年份:2004
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Design and Model-based Control of Nonlinear Chemical Processes
合作研究:非线性化学过程的设计和基于模型的控制
- 批准号:
0101237 - 财政年份:2001
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Azeotropic Distillation with Internal Decanters
使用内部卧螺离心机进行共沸蒸馏
- 批准号:
9904099 - 财政年份:1999
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Combined Research-Curriculum Development in Process Design, Optimization, and Control
工艺设计、优化和控制方面的联合研究课程开发
- 批准号:
9527441 - 财政年份:1995
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Optimal Control of the Czochralski Crystallization Process
直拉结晶过程的优化控制
- 批准号:
9400775 - 财政年份:1994
- 资助金额:
$ 15万 - 项目类别:
Continuing grant
Design and Operation of High Performance Chemical Processes
高性能化学工艺的设计和操作
- 批准号:
9114080 - 财政年份:1991
- 资助金额:
$ 15万 - 项目类别:
Continuing grant
相似海外基金
CPS: Medium: GOALI: Enabling Safe Innovation for Autonomy: Making Publish/Subscribe Really Real-Time
CPS:中:GOALI:实现自主安全创新:使发布/订阅真正实时
- 批准号:
2333120 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
CPS: Medium: GOALI: Enabling Scalable Real-Time Certification for AI-Oriented Safety-Critical Systems
CPS:中:GOALI:为面向 AI 的安全关键系统提供可扩展的实时认证
- 批准号:
2038855 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
CDS&E: GOALI: Paints/Coatings In-Silico Product Design and Real-Time Product-Quality Monitoring and Control
CDS
- 批准号:
1953176 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
CPS: Medium: GOALI: Real-Time Computer Vision in Autonomous Vehicles: Real Fast Isn't Good Enough
CPS:中:GOALI:自动驾驶汽车中的实时计算机视觉:真正的快还不够好
- 批准号:
1837337 - 财政年份:2019
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
GOALI: Stimulated Raman microscopy for sensitive real-time detection of membrane fouling
GOALI:受激拉曼显微镜用于灵敏地实时检测膜污染
- 批准号:
1826542 - 财政年份:2018
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
GOALI: INFEWS N/P/H2O: Real-Time and Low-Cost Monitoring of Orthophosphate Ions Using Novel Graphene-Based Transistor Sensors
目标:INFEWS N/P/H2O:使用新型石墨烯晶体管传感器实时、低成本监测正磷酸盐离子
- 批准号:
1606057 - 财政年份:2016
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
GOALI: Enabling Real-Time Detection and Identification of Friction Stir Welding Defects Through the Use of Physics-Based Process Dynamic Modeling
目标:通过使用基于物理的过程动态建模实现搅拌摩擦焊缺陷的实时检测和识别
- 批准号:
1332738 - 财政年份:2013
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
GOALI: Real-Time Control of Production Systems for Energy-Efficient Manufacturing: Theory and Applications
GOALI:节能制造生产系统的实时控制:理论与应用
- 批准号:
1411516 - 财政年份:2013
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
GOALI: Georeferenced Visualization and Emulated Proximity Monitoring for Real Time Knowledge-Based Excavator Control
GOALI:基于知识的挖掘机实时控制的地理参考可视化和模拟接近监控
- 批准号:
1160937 - 财政年份:2012
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
GOALI: Fast Nonlinear Model Predictive Control for Dynamic Real-time Optimization
GOALI:用于动态实时优化的快速非线性模型预测控制
- 批准号:
1160014 - 财政年份:2012
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant