EAGER: Real-Time: Learning-Mediated Control for Traffic Shaping

EAGER:实时:以学习为中介的流量整形控制

基本信息

项目摘要

Efficient Management of Vehicular Traffic via Real-time Machine-Learning-Mediated Control and Traffic ShapingWhile connectivity and automation promise orders of magnitude gains in the safety and efficiency of vehicular transportation networks, these gains cannot be realized without monitoring, learning the behavior, and control of vehicles at different aggregation levels. Indeed, current congestion mitigation methods, such as speed harmonization that uses a sequence of variable speed limits along a highway do not reliably control congestion, and may exacerbate it (e.g., via shocks propagated through speed limit changes) due to the inconsistency between congestion prediction and real-time control. The objective of this project is to develop a holistic approach using machine-learning methods to identify and predict macroscopic congestion behavior of traffic based on both vehicle-borne and transportation infrastructure measurements, while designing fine-grain control systems for individual vehicles that can help to mitigate congestion effects. In doing so, the project recognizes that these designs must account for the possibility of low take-up rates of connected, automated vehicles (CAVs) over the next decade, and the consequent dominance of human-mediated vehicle operation for some time to come. The project also includes the development of educational materials on data analytics and vehicular control systems. Intrinsic to the program are efforts at outreach to involve high-school students via demonstrations and lectures based on the technology developed.The goal of this project is to develop the theory of and evaluate a novel approach to traffic management entitled "real-time learning-mediated control". The key idea is to meld large-scale real-time learning about macroscopic phenomena in a physically interpretable manner, with distributed dynamic control of individual vehicles in a provably safe and efficient manner. The work comprises two thrusts, namely (i) Traffic State Prediction, which offers a Graph Signal Processing (GSP)-based congestion prediction approach for planned and unplanned congestion-causing events, and (ii) Traffic Shaping and Control, which offers novel vehicular control methods that shape traffic in a stable manner over the multiple dimensions of target time headway and velocities over space and time, and candidate time-gap and velocity profiles in a mixed environment of both connected, automated vehicles and human driven ones. Thus, the overall aim is to combine the ability of learning methods to provide predictions about complex interconnected systems, with control laws that are safe and consistent with the laws of physics. The value of this research to broader society is in combining traffic prediction, control and learning, which can result in accurate congestion mitigation and increased throughput. Incorporating analytical concepts into senior design projects and courses enhances the project via educational impact. The project also contributes to development of systems-design expertise for students, as well as to diversity enhancement through minority student engagement.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
通过实时机器学习介导的控制和交通整形有效管理车辆交通虽然连接和自动化承诺在车辆运输网络的安全性和效率方面获得数量级的收益,但如果不监控,学习行为和控制不同聚合级别的车辆,这些收益就无法实现。实际上,当前的拥塞缓解方法(诸如使用沿高速公路沿着的一系列可变速度限制的速度协调)不能可靠地控制拥塞,并且可能加剧拥塞(例如,经由通过速度限制变化传播的冲击),这是由于拥塞预测和实时控制之间的不一致。该项目的目标是开发一种整体方法,使用机器学习方法来识别和预测基于车载和交通基础设施测量的宏观交通拥堵行为,同时为单个车辆设计细粒度控制系统,以帮助减轻拥堵影响。 在这样做的过程中,该项目认识到,这些设计必须考虑到未来十年互联自动驾驶汽车(CAV)的低使用率的可能性,以及未来一段时间以人为媒介的车辆操作的主导地位。 该项目还包括编写关于数据分析和车辆控制系统的教材。该项目的核心是努力通过基于开发的技术的演示和讲座来吸引高中生参与。该项目的目标是开发一种名为“实时学习介导控制”的交通管理新方法的理论并对其进行评估。 其关键思想是以物理可解释的方式融合对宏观现象的大规模实时学习,以可证明安全和有效的方式对单个车辆进行分布式动态控制。这项工作包括两个方面,即(i)交通状态预测,它为计划内和计划外的交通拥堵事件提供了一种基于图形信号处理(GSP)的拥堵预测方法,以及(ii)交通整形和控制,它提供了新的车辆控制方法,在目标时间间隔和空间和时间速度的多个维度上以稳定的方式整形交通,以及在连接的自动车辆和人类驾驶车辆的混合环境中的候选时间间隔和速度曲线。 因此,总体目标是将学习方法提供关于复杂互连系统的预测的能力与安全且符合物理定律的控制律联合收割机相结合。 这项研究对更广泛的社会的价值在于将交通预测、控制和学习结合起来,这可以准确地缓解拥堵并增加吞吐量。 将分析概念融入高级设计项目和课程,通过教育影响增强了项目。该项目还有助于学生系统设计专业知识的发展,以及通过少数民族学生的参与来增强多样性。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Variational Graph Recurrent Neural Networks
  • DOI:
  • 发表时间:
    2019-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ehsan Hajiramezanali;Arman Hasanzadeh;N. Duffield;K. Narayanan;Mingyuan Zhou;Xiaoning Qian
  • 通讯作者:
    Ehsan Hajiramezanali;Arman Hasanzadeh;N. Duffield;K. Narayanan;Mingyuan Zhou;Xiaoning Qian
Piecewise Stationary Modeling of Random Processes Over Graphs With an Application to Traffic Prediction
Learning with Safety Constraints: Sample Complexity of Reinforcement Learning for Constrained MDPs
  • DOI:
    10.1609/aaai.v35i9.16937
  • 发表时间:
    2020-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aria HasanzadeZonuzy;D. Kalathil;S. Shakkottai
  • 通讯作者:
    Aria HasanzadeZonuzy;D. Kalathil;S. Shakkottai
Adaptive Shrinkage Estimation for Streaming Graphs
流图的自适应收缩估计
Semi-Implicit Stochastic Recurrent Neural Networks
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nicholas Duffield其他文献

Towards Invariant Time Series Forecasting in Smart Cities
智慧城市中的不变时间序列预测
Learning Flexible Time-windowed Granger Causality Integrating Heterogeneous Interventional Time Series Data
学习集成异构干预时间序列数据的灵活时间窗格兰杰因果关系
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ziyi Zhang;Shaogang Ren;Xiaoning Qian;Nicholas Duffield
  • 通讯作者:
    Nicholas Duffield

Nicholas Duffield的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nicholas Duffield', 18)}}的其他基金

EAGER: Adaptive Sampling of Massive Graph Streams
EAGER:海量图流的自适应采样
  • 批准号:
    1848596
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
NeTS: Small: Collaborative Research: Distributed Approximate Packet Classification
NeTS:小型:协作研究:分布式近似数据包分类
  • 批准号:
    1618030
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

Immuno-Real Time PCR法精确定量血清MG7抗原及在早期胃癌预警中的价值
  • 批准号:
    30600737
  • 批准年份:
    2006
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
无色ReAl3(BO3)4(Re=Y,Lu)系列晶体紫外倍频性能与器件研究
  • 批准号:
    60608018
  • 批准年份:
    2006
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

EAGER: Building a Provable Differentially Private Real-time Data-blind ML Algorithm: A case study on Enhancing STEM Student Engagement in Online Learning
EAGER:构建可证明的差分隐私实时数据盲机器学习算法:关于增强 STEM 学生在线学习参与度的案例研究
  • 批准号:
    2329919
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Real-time Strategies and Synchronized Time Distribution Mechanisms for Enhanced Exascale Performance-Portability and Predictability
合作研究:EAGER:实时策略和同步时间分配机制,以增强百亿亿次性能-可移植性和可预测性
  • 批准号:
    2405142
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Real-time Strategies and Synchronized Time Distribution Mechanisms for Enhanced Exascale Performance-Portability and Predictability
合作研究:EAGER:实时策略和同步时间分配机制,以增强百亿亿次性能-可移植性和可预测性
  • 批准号:
    2151021
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Real-time Strategies and Synchronized Time Distribution Mechanisms for Enhanced Exascale Performance-Portability and Predictability
合作研究:EAGER:实时策略和同步时间分配机制,以增强百亿亿次性能-可移植性和可预测性
  • 批准号:
    2151022
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: DCL: SaTC: Enabling Interdisciplinary Collaboration: Inoculation vs. education: the role of real time alerts and end-user overconfidence
EAGER:DCL:SaTC:实现跨学科协作:接种与教育:实时警报和最终用户过度自信的作用
  • 批准号:
    2210198
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: Compact Field Portable Biophotonics Instrument for Real-Time Automated Analysis and Identification of Blood Cells Impact Impacted by COVID-19
EAGER:紧凑型现场便携式生物光子学仪器,用于实时自动分析和识别受 COVID-19 影响的血细胞
  • 批准号:
    2141473
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Real-time Strategies and Synchronized Time Distribution Mechanisms for Enhanced Exascale Performance-Portability and Predictability
合作研究:EAGER:实时策略和同步时间分配机制,以增强百亿亿次性能-可移植性和可预测性
  • 批准号:
    2151020
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: MEMS Enabled Real Time Detection of Pathogens Viruses and Biomarkers
EAGER:MEMS 实现病原体病毒和生物标记物的实时检测
  • 批准号:
    2210471
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: Collaborative Research: Development of an Energy-Harvesting Real-time Under-ice Monitoring System in the Arctic Ocean
EAGER:合作研究:北冰洋能量收集实时冰下监测系统的开发
  • 批准号:
    2134146
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: High-throughput, Autonomous Real-time Monitoring of Tissue Mechanical Property Change via Impedimetric Sensor Arrays
EAGER/协作研究:通过阻抗传感器阵列高通量、自主实时监测组织机械性能变化
  • 批准号:
    2141008
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了