FW-HTF: Collaborative Research: Augmenting and Advancing Cognitive Performance of Control Room Operators for Power Grid Resiliency

FW-HTF:合作研究:增强和提高控制室操作员的认知表现以提高电网弹性

基本信息

  • 批准号:
    1840052
  • 负责人:
  • 金额:
    $ 32.31万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

The Future of Work at the Human-Technology Frontier (FW-HTF) is one of 10 new Big Ideas for Future Investment announced by the National Science Foundation. The FW-HTF cross-directorate program aims to respond to the challenges and opportunities of the changing landscape of jobs and work by supporting convergent research. This award fulfills part of that aim. Effective decision making by power grid operators in extreme events (e.g., Hurricane Maria in Puerto Rico, the Ukraine cyber attack) depends on two factors: operator knowledge acquired through training and experience, and appropriate decision support tools. Decision making in electric grid operation during extreme adverse events directly impacts the life of citizens. This project will augment the cognitive performance of human operators with new, human-focused decision support tools and better, data-driven training for managing the grid especially under highly disruptive conditions. The development of new generation of tools for online knowledge fusion, event detection, cyber-physical-human analysis in operational environment can be applied during extreme events and provide energy to critical facilities like hospitals, city halls and essential infrastructure to keep citizens safe and avoid economic loss for the Nation. Higher performance of operators will improve worker quality of life and will enhance the economic and social well-being of the country. The project's training objectives will leverage existing educational efforts and outreach activities and we will publicize the multidisciplinary outcomes through multiple venues.The proposed project will integrate principles from cognitive neuroscience, artificial intelligence, machine learning, data science, cybersecurity, and power engineering to augment power grid operators for better performance. Two key parameters influencing human performance from the dynamic attentional control (DAC) framework are working memory (WM) capacity, the ability to maintain information in the focus of attention, and cognitive flexibility (CF), the ability to use feedback to redirect decision making given fast changing system scenarios. The project will achieve its goals through analyzing WM and CF and performance of power grid operators during extreme events; augmenting cognitive performance through advanced machine learning based decision support tools and adaptive human-machine system; and developing theory-driven training simulators for advancing cognitive performance of human operators for enhanced grid resilience. A new set of algorithms have been proposed for data-driven event detection, anomaly flag processing, root cause analysis and decision support using Tree Augmented naive Bayesian Net (TAN) structure, Minimum Weighted Spanning Tree (MWST) using the Mutual Information (MI) metric, and unsupervised learning improved for online learning and decision making. Additionally, visualization tools have been proposed using cognitive factor analysis and human error analysis. We propose a training process driven by cognitive and physiometric analysis and inspired by our experience in operators training in multiple domain: the power grid, aircraft and spacecraft flight simulators. A systematic approach for human operator decision making is proposed using quantifiable human and engineering analysis indices for power grid resiliency.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人类技术前沿的未来工作(FW-HTF)是美国国家科学基金会宣布的10个新的未来投资大想法之一。FW-HTF跨董事会计划旨在通过支持融合研究来应对不断变化的就业和工作环境的挑战和机遇。这个奖项实现了这个目标的一部分。电网运营商在极端事件中的有效决策(例如,波多黎各的玛丽亚飓风、乌克兰的网络攻击)取决于两个因素:操作员通过培训和经验获得的知识,以及适当的决策支持工具。极端不利事件下的电网运行决策直接影响到市民的生活。该项目将通过新的、以人为本的决策支持工具和更好的、数据驱动的培训来增强人类操作员的认知性能,以管理电网,特别是在高度破坏性的条件下。新一代在线知识融合、事件检测、网络物理人分析工具的开发,可以在极端事件期间应用,并为医院、市政霍尔斯和重要基础设施等关键设施提供能源,以保障公民安全,避免国家经济损失。经营者业绩的提高将改善工人的生活质量,并将增进国家的经济和社会福祉。该项目的培训目标将利用现有的教育工作和推广活动,我们将通过多个场所宣传多学科成果,拟议的项目将整合认知神经科学,人工智能,机器学习,数据科学,网络安全和电力工程的原理,以增强电网运营商的更好的性能。从动态注意力控制(DAC)框架中影响人类表现的两个关键参数是工作记忆(WM)容量,即在注意力焦点中保持信息的能力,以及认知灵活性(CF),即在快速变化的系统场景中使用反馈重新定向决策的能力。该项目将通过分析WM和CF以及极端事件期间电网运营商的表现来实现其目标;通过基于先进机器学习的决策支持工具和自适应人机系统来增强认知性能;并开发理论驱动的培训模拟器,以提高人类运营商的认知性能,从而增强电网弹性。提出了一套新的算法,用于数据驱动的事件检测,异常标志处理,根本原因分析和决策支持,使用树增强朴素贝叶斯网(TAN)结构,最小加权生成树(MWST),使用互信息(MI)度量,和无监督学习改进的在线学习和决策。此外,已经提出了使用认知因素分析和人为错误分析的可视化工具。我们提出了一个由认知和生理分析驱动的培训过程,并受到我们在多个领域运营商培训经验的启发:电网,飞机和航天器飞行模拟器。一个系统的方法,为人类操作员的决策提出了使用量化的人力和工程分析指标,电网resilient.This奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Blockchains for Transactive Energy Systems: Opportunities, Challenges, and Approaches
交互式能源系统的区块链:机遇、挑战和方法
  • DOI:
    10.1109/mc.2020.3002997
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Eisele, Scott;Barreto, Carlos Dubey;Mavridou, Anastasia
  • 通讯作者:
    Mavridou, Anastasia
Synchrophasor Data Event Detection using Unsupervised Wavelet Convolutional Autoencoders
  • DOI:
    10.1109/smartcomp58114.2023.00080
  • 发表时间:
    2023-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jacob Buckelew;S. Basumallik;Vasavi Sivaramakrishnan;Ayan Mukhopadhyay;Amal Srivastava;Abhishek Dubey
  • 通讯作者:
    Jacob Buckelew;S. Basumallik;Vasavi Sivaramakrishnan;Ayan Mukhopadhyay;Amal Srivastava;Abhishek Dubey
On Benchmarking for Crowdsourcing and Future of Work Platform
关于众包和未来工作平台的基准
Generative Anomaly Detection for Time Series Datasets
  • DOI:
    10.48550/arxiv.2206.14597
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhuangwei Kang;Ayan Mukhopadhyay;A. Gokhale;Shijie Wen;Abhishek Dubey
  • 通讯作者:
    Zhuangwei Kang;Ayan Mukhopadhyay;A. Gokhale;Shijie Wen;Abhishek Dubey
Scalable Pythagorean Mean based Incident Detection in Smart Transportation Systems
智能交通系统中基于可扩展毕达哥拉斯均值的事件检测
  • DOI:
    10.1145/3603381
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Islam, Md. Jaminur;Talusan, Jose Paolo;Bhattacharjee, Shameek;Tiausas, Francis;Dubey, Abhishek;Yasumoto, Keiichi;Das, Sajal K.
  • 通讯作者:
    Das, Sajal K.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gautam Biswas其他文献

Surface instability of a thin electrolyte film undergoing coupled electroosmotic and electrophoretic flows in a microfluidic channel
微流体通道中经历电渗和电泳耦合流动的电解质薄膜的表面不稳定性
  • DOI:
    10.1002/elps.201100306
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Bahni Ray;P. D. S. Reddy;D. Bandyopadhyay;S. Joo;Ashutosh Sharma;Shizhi Qian;Gautam Biswas
  • 通讯作者:
    Gautam Biswas
Cointegration Analysis and Forecasting of the Export Function of Bangladesh Using the Error Correction Model
利用误差修正模型对孟加拉国出口函数进行协整分析与预测
Simulation-Based Game Learning Environments: Building and Sustaining a Fish Tank
基于模拟的游戏学习环境:建造和维护鱼缸
Investigating Self-Regulated Learning in Teachable Agent Environments
研究可教代理环境中的自我调节学习
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Kinnebrew;Gautam Biswas;Brian Sulcer;Roger Taylor
  • 通讯作者:
    Roger Taylor
Do Foreign Grants and Capital Formation Indeed Impact Economic Growth? An Empirical Evidence from Bangladesh
外国赠款和资本形成确实会影响经济增长吗?

Gautam Biswas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gautam Biswas', 18)}}的其他基金

EAGER: Co-Designing a Cognitive Teaching Assistant to Support Evidence-Based Instruction in Open-Ended Learning Environments
EAGER:共同设计认知助教,支持开放式学习环境中的循证教学
  • 批准号:
    2327708
  • 财政年份:
    2023
  • 资助金额:
    $ 32.31万
  • 项目类别:
    Standard Grant
Collaborative Research: Computational Modeling for Integrating Science and Engineering Design: Model Construction, Manipulation, and Exploration
协作研究:科学与工程设计相结合的计算建模:模型构建、操作和探索
  • 批准号:
    2055597
  • 财政年份:
    2021
  • 资助金额:
    $ 32.31万
  • 项目类别:
    Continuing Grant
Analyzing and Supporting Students' Learning Behaviors in Computational STEM Learning Environments
分析和支持学生在计算 STEM 学习环境中的学习行为
  • 批准号:
    2017000
  • 财政年份:
    2020
  • 资助金额:
    $ 32.31万
  • 项目类别:
    Standard Grant
Collaborative Research: An Interdisciplinary Approach to Prepare Undergraduates for Data Science Using Real-World Data from High Frequency Monitoring Systems
协作研究:利用高频监测系统的真实数据为本科生准备数据科学的跨学科方法
  • 批准号:
    1915487
  • 财政年份:
    2019
  • 资助金额:
    $ 32.31万
  • 项目类别:
    Continuing Grant
I-Corps: Predicting and Preventing Mold Growth and Unforeseen HVAC Equipment Failures with an Intelligent Monitoring and Alerting System
I-Corps:通过智能监控和警报系统预测和预防霉菌生长和不可预见的 HVAC 设备故障
  • 批准号:
    1951810
  • 财政年份:
    2019
  • 资助金额:
    $ 32.31万
  • 项目类别:
    Standard Grant
Convergence HTF: Collaborative: Workshop on Convergence Research about Multimodal Human Learning Data during Human Machine Interactions
融合 HTF:协作:人机交互过程中多模态人类学习数据的融合研究研讨会
  • 批准号:
    1744333
  • 财政年份:
    2017
  • 资助金额:
    $ 32.31万
  • 项目类别:
    Standard Grant
Research and Assessment on Synergistic Learning of Physics and Programming through Computational Modeling and Problem Solving
通过计算建模和问题解决来研究和评估物理和编程的协同学习
  • 批准号:
    1640199
  • 财政年份:
    2016
  • 资助金额:
    $ 32.31万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Data Mining and Observation to derive an enhanced theory of SRL in Science learning environments
协作研究:利用数据挖掘和观察得出科学学习环境中 SRL 的增强理论
  • 批准号:
    1561676
  • 财政年份:
    2016
  • 资助金额:
    $ 32.31万
  • 项目类别:
    Standard Grant
BIGDATA: EAGER: Infrastructure and Analytics for Data Intensive Research in Open-Ended Learning Environments
BIGDATA:EAGER:开放式学习环境中数据密集型研究的基础设施和分析
  • 批准号:
    1548499
  • 财政年份:
    2015
  • 资助金额:
    $ 32.31万
  • 项目类别:
    Standard Grant
DIP: Extending CTSiM: An Adaptive Computational Thinking Environment for Learning Science through Modeling and Simulation in Middle School Classrooms
DIP:扩展 CTSiM:通过中学课堂建模和仿真学习科学的自适应计算思维环境
  • 批准号:
    1441542
  • 财政年份:
    2014
  • 资助金额:
    $ 32.31万
  • 项目类别:
    Standard Grant

相似国自然基金

转HTFα对脊髓继发性损伤和微循环重建的影响
  • 批准号:
    39970755
  • 批准年份:
    1999
  • 资助金额:
    13.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research [FW-HTF-RL]: Enhancing the Future of Teacher Practice via AI-enabled Formative Feedback for Job-Embedded Learning
协作研究 [FW-HTF-RL]:通过人工智能支持的工作嵌入学习形成性反馈增强教师实践的未来
  • 批准号:
    2326170
  • 财政年份:
    2023
  • 资助金额:
    $ 32.31万
  • 项目类别:
    Standard Grant
Collaborative Research: FW-HTF-RM: Human-in-the-Lead Construction Robotics: Future-Proofing Framing Craft Workers in Industrialized Construction
合作研究:FW-HTF-RM:人类主导的建筑机器人:工业化建筑中面向未来的框架工艺工人
  • 批准号:
    2326160
  • 财政年份:
    2023
  • 资助金额:
    $ 32.31万
  • 项目类别:
    Standard Grant
Collaborative Research: FW-HTF-RL: Trapeze: Responsible AI-assisted Talent Acquisition for HR Specialists
合作研究:FW-HTF-RL:Trapeze:负责任的人工智能辅助人力资源专家人才获取
  • 批准号:
    2326193
  • 财政年份:
    2023
  • 资助金额:
    $ 32.31万
  • 项目类别:
    Standard Grant
Collaborative Research: FW-HTF-RM: Artificial Intelligence Technology for Future Music Performers
合作研究:FW-HTF-RM:未来音乐表演者的人工智能技术
  • 批准号:
    2326198
  • 财政年份:
    2023
  • 资助金额:
    $ 32.31万
  • 项目类别:
    Standard Grant
FW-HTF-RL/Collaborative Research: Future of Digital Facility Management (Future of DFM)
FW-HTF-RL/协作研究:数字设施管理的未来(DFM 的未来)
  • 批准号:
    2326407
  • 财政年份:
    2023
  • 资助金额:
    $ 32.31万
  • 项目类别:
    Standard Grant
FW-HTF-RL/Collaborative Research: Future of Digital Facility Management (Future of DFM)
FW-HTF-RL/协作研究:数字设施管理的未来(DFM 的未来)
  • 批准号:
    2326408
  • 财政年份:
    2023
  • 资助金额:
    $ 32.31万
  • 项目类别:
    Standard Grant
Collaborative Research: FW-HTF-R: Future of Construction Workplace Health Monitoring
合作研究:FW-HTF-R:建筑工作场所健康监测的未来
  • 批准号:
    2401745
  • 财政年份:
    2023
  • 资助金额:
    $ 32.31万
  • 项目类别:
    Standard Grant
Collaborative Research: FW-HTF-RL: Understanding the Ethics, Development, Design, and Integration of Interactive Artificial Intelligence Teammates in Future Mental Health Work
合作研究:FW-HTF-RL:了解未来心理健康工作中交互式人工智能队友的伦理、开发、设计和整合
  • 批准号:
    2326146
  • 财政年份:
    2023
  • 资助金额:
    $ 32.31万
  • 项目类别:
    Standard Grant
Collaborative Research [FW-HTF-RL]: Enhancing the Future of Teacher Practice via AI-enabled Formative Feedback for Job-Embedded Learning
协作研究 [FW-HTF-RL]:通过人工智能支持的工作嵌入学习形成性反馈增强教师实践的未来
  • 批准号:
    2326169
  • 财政年份:
    2023
  • 资助金额:
    $ 32.31万
  • 项目类别:
    Standard Grant
FW-HTF-RL/Collaborative Research: The Future of Aviation Inspection: Artificial Intelligence and Mixed Reality as Agents of Transformation
FW-HTF-RL/合作研究:航空检查的未来:人工智能和混合现实作为转型的推动者
  • 批准号:
    2326186
  • 财政年份:
    2023
  • 资助金额:
    $ 32.31万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了