I-Corps: Predicting and Preventing Mold Growth and Unforeseen HVAC Equipment Failures with an Intelligent Monitoring and Alerting System

I-Corps:通过智能监控和警报系统预测和预防霉菌生长和不可预见的 HVAC 设备故障

基本信息

  • 批准号:
    1951810
  • 负责人:
  • 金额:
    $ 5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-12-01 至 2020-11-30
  • 项目状态:
    已结题

项目摘要

This I-Corps project will increase a customer’s ability to identify and mitigate mold and HVAC issues before they happen, allowing them to better allocate their resources and ultimately save money and maintain a healthy atmosphere and reduce waste. The core technology is centered around a holistic approach to indoor air quality (IAQ) and HVAC equipment maintenance. More than 75% of IAQ problems are HVAC related, and poor IAQ results in reduced productivity of approximately 14.5 million missed workdays a year costing the US more than $168 B annually. Widespread adoption of this technology would help companies increase their productivity due to better indoor air quality. Several studies have concluded that poor indoor air quality results in reduced performance. Some of the studies have calculated the total costs associated with mold-related asthma and sinus issues alone to be up to $32 B in medical bills and absenteeism. The approach focuses on HVAC equipment and enabling preventive maintenance, which may save the manufacturing industry over $200 B annually. This I-Corps project is focused on developing an intelligent monitoring and predictive system that is capable of 1) predicting future mold growth, 2) making predictions of future HVAC system health, and 3) generating alerts, work orders, and maintenance recommendations to the end user. Such a service does not currently exist within traditional building automation systems, which only monitor the mechanical systems with a focus on energy optimization, not the environment with a focus on occupant comfort. Facility managers continue to take a reactive approach to HVAC system maintenance and mold remediation, rather than a proactive, preventative approach. The goal is to evaluate several approaches to quantify the state of health of HVAC systems with limited data under the assumption that access to proprietary data is not possible. Time series analysis methods, such as vectorized auto regression, provide accurate anomaly detection results under a short prediction horizon, but are not suitable for fault isolation. Using mold growth and rate charts from the literature, a machine learning algorithm has been developed to accurately classify the risk level of a given temperature and humidity reading, but further work is needed to account for a cumulative exposure rate or measurement fluctuations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个I-Corps项目将提高客户在霉菌和HVAC问题发生之前识别和缓解这些问题的能力,使他们能够更好地分配资源,最终节省资金,保持健康的氛围并减少浪费。核心技术围绕室内空气质量(IAQ)和HVAC设备维护的整体方法。超过75%的IAQ问题与HVAC有关,而较差的IAQ导致每年约1450万个工作日的生产率降低,每年给美国造成超过1680亿B美元的损失。这项技术的广泛采用将有助于公司提高生产力,因为室内空气质量更好。一些研究得出结论,室内空气质量差会导致性能下降。一些研究已经计算出与霉菌相关的哮喘和鼻窦问题的总成本高达32 B美元的医疗费用和缺勤。该方法侧重于HVAC设备和实现预防性维护,这可以每年为制造业节省超过200 B美元。该I-Corps项目的重点是开发一种智能监测和预测系统,该系统能够1)预测未来的霉菌生长,2)预测未来的HVAC系统健康状况,3)向最终用户生成警报,工作订单和维护建议。这种服务目前不存在于传统的楼宇自动化系统中,传统的楼宇自动化系统仅监控关注能量优化的机械系统,而不是关注居住者舒适度的环境。设施管理人员继续采取反应性方法来进行暖通空调系统维护和霉菌修复,而不是采取积极主动的预防性方法。我们的目标是评估几种方法来量化的健康状态的HVAC系统有限的数据下,访问专有数据是不可能的假设。时间序列分析方法,如向量化自回归,提供准确的异常检测结果在一个短的预测范围内,但不适合故障隔离。利用文献中的霉菌生长和速率图表,开发了一种机器学习算法,可以准确地对给定温度和湿度阅读的风险级别进行分类,但需要进一步的工作来解释累积暴露率或测量波动。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gautam Biswas其他文献

Surface instability of a thin electrolyte film undergoing coupled electroosmotic and electrophoretic flows in a microfluidic channel
微流体通道中经历电渗和电泳耦合流动的电解质薄膜的表面不稳定性
  • DOI:
    10.1002/elps.201100306
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Bahni Ray;P. D. S. Reddy;D. Bandyopadhyay;S. Joo;Ashutosh Sharma;Shizhi Qian;Gautam Biswas
  • 通讯作者:
    Gautam Biswas
Cointegration Analysis and Forecasting of the Export Function of Bangladesh Using the Error Correction Model
利用误差修正模型对孟加拉国出口函数进行协整分析与预测
Simulation-Based Game Learning Environments: Building and Sustaining a Fish Tank
基于模拟的游戏学习环境:建造和维护鱼缸
Investigating Self-Regulated Learning in Teachable Agent Environments
研究可教代理环境中的自我调节学习
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Kinnebrew;Gautam Biswas;Brian Sulcer;Roger Taylor
  • 通讯作者:
    Roger Taylor
Do Foreign Grants and Capital Formation Indeed Impact Economic Growth? An Empirical Evidence from Bangladesh
外国赠款和资本形成确实会影响经济增长吗?

Gautam Biswas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gautam Biswas', 18)}}的其他基金

EAGER: Co-Designing a Cognitive Teaching Assistant to Support Evidence-Based Instruction in Open-Ended Learning Environments
EAGER:共同设计认知助教,支持开放式学习环境中的循证教学
  • 批准号:
    2327708
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Collaborative Research: Computational Modeling for Integrating Science and Engineering Design: Model Construction, Manipulation, and Exploration
协作研究:科学与工程设计相结合的计算建模:模型构建、操作和探索
  • 批准号:
    2055597
  • 财政年份:
    2021
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Analyzing and Supporting Students' Learning Behaviors in Computational STEM Learning Environments
分析和支持学生在计算 STEM 学习环境中的学习行为
  • 批准号:
    2017000
  • 财政年份:
    2020
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Collaborative Research: An Interdisciplinary Approach to Prepare Undergraduates for Data Science Using Real-World Data from High Frequency Monitoring Systems
协作研究:利用高频监测系统的真实数据为本科生准备数据科学的跨学科方法
  • 批准号:
    1915487
  • 财政年份:
    2019
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
FW-HTF: Collaborative Research: Augmenting and Advancing Cognitive Performance of Control Room Operators for Power Grid Resiliency
FW-HTF:合作研究:增强和提高控制室操作员的认知表现以提高电网弹性
  • 批准号:
    1840052
  • 财政年份:
    2018
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Convergence HTF: Collaborative: Workshop on Convergence Research about Multimodal Human Learning Data during Human Machine Interactions
融合 HTF:协作:人机交互过程中多模态人类学习数据的融合研究研讨会
  • 批准号:
    1744333
  • 财政年份:
    2017
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Research and Assessment on Synergistic Learning of Physics and Programming through Computational Modeling and Problem Solving
通过计算建模和问题解决来研究和评估物理和编程的协同学习
  • 批准号:
    1640199
  • 财政年份:
    2016
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Data Mining and Observation to derive an enhanced theory of SRL in Science learning environments
协作研究:利用数据挖掘和观察得出科学学习环境中 SRL 的增强理论
  • 批准号:
    1561676
  • 财政年份:
    2016
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
BIGDATA: EAGER: Infrastructure and Analytics for Data Intensive Research in Open-Ended Learning Environments
BIGDATA:EAGER:开放式学习环境中数据密集型研究的基础设施和分析
  • 批准号:
    1548499
  • 财政年份:
    2015
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
DIP: Extending CTSiM: An Adaptive Computational Thinking Environment for Learning Science through Modeling and Simulation in Middle School Classrooms
DIP:扩展 CTSiM:通过中学课堂建模和仿真学习科学的自适应计算思维环境
  • 批准号:
    1441542
  • 财政年份:
    2014
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant

相似海外基金

ADHD Remote Technology and ADHD transition: predicting and preventing negative outcomes (ART-transition)
ADHD 远程技术和 ADHD 过渡:预测和预防负面结果(ART-过渡)
  • 批准号:
    MR/Y003209/1
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Research Grant
Predicting and Preventing Adverse Maternal and Child Outcomes of Opioid Use Disorder in Pregnancy
预测和预防妊娠期阿片类药物使用障碍的不良母婴结局
  • 批准号:
    10683849
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
Understanding, Predicting and Preventing Type 2 Diabetes in Youth, Boston Clinical Center (UPP Study)
了解、预测和预防青少年 2 型糖尿病,波士顿临床中心(UPP 研究)
  • 批准号:
    10583740
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
PIPP Phase I: Predicting and Preventing Epidemic to Pandemic Transitions
PIPP 第一阶段:预测和预防流行病向大流行病的转变
  • 批准号:
    2200052
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Predicting and preventing all forms of cardiac arrest in hospitals with CodeRhythm™ AI software.
使用 CodeRhythm™ AI 软件预测和预防医院中各种形式的心脏骤停。
  • 批准号:
    10026788
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Collaborative R&D
Predicting and Preventing Ventilator-Induced Lung Injury
预测和预防呼吸机引起的肺损伤
  • 批准号:
    10318215
  • 财政年份:
    2021
  • 资助金额:
    $ 5万
  • 项目类别:
Predicting and Preventing Gun Violence: An Evaluation of READI Chicago
预测和预防枪支暴力:READI 芝加哥评估
  • 批准号:
    10400479
  • 财政年份:
    2021
  • 资助金额:
    $ 5万
  • 项目类别:
Predicting and Preventing Ventilator-Induced Lung Injury
预测和预防呼吸机引起的肺损伤
  • 批准号:
    10543770
  • 财政年份:
    2021
  • 资助金额:
    $ 5万
  • 项目类别:
Predicting and Preventing Suicidal Ideation among High-Risk Sexual and Gender Minority Adolescents
预测和预防高危性和性别少数青少年的自杀意念
  • 批准号:
    10487533
  • 财政年份:
    2021
  • 资助金额:
    $ 5万
  • 项目类别:
Predicting and Preventing Chemotherapy-Induced Cardiotoxicity in African American Children
预测和预防非裔美国儿童化疗引起的心脏毒性
  • 批准号:
    10462680
  • 财政年份:
    2021
  • 资助金额:
    $ 5万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了