RI: Medium: Collaborative Research: Next-Generation Statistical Optimization Methods for Big Data Computing

RI:媒介:协作研究:大数据计算的下一代统计优化方法

基本信息

  • 批准号:
    1840857
  • 负责人:
  • 金额:
    $ 23.77万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

This project develops a new generation of optimization methods to address data mining and knowledge discovery challenges in large-scale scientific data analysis. The project is constructed in the context that modern computing architectures are enabling us to fit complex statistical models (Big Models) on large and complex datasets (Big Data). However, despite significant progress in each subfield of Big Data, Big Model, and modern computing architecture, we are still lacking powerful optimization techniques to effectively integrate these key components.One important bottleneck is that many general-purpose optimization methods are not specifically designed for statistical learning problems. Even some of them are tailored to utilize specific problem structures, they have not actually incorporated sophisticated statistical thinking into algorithm design and analysis. To tackle this bottleneck, the project extends traditional theory to open new possibilities for nontraditional optimization problems, such as nonconvex and infinite-dimensional examples. The project develops deeper theoretical understanding of several challenging issues in optimization (such as nonconvexity), develops new algorithms that will lead to better practical methods in the big data era, and demonstrates the new methods on challenging bio-informatics problems.The project is closely related to NSF's mission to promote Big Data research, and will have broad impacts. In the Big Data era, we see an urgent need for powerful optimization methods to handle the increasing complexity of modern datasets. However, we still lack adequate methods, theory, and computational techniques. By simultaneously addressing these aspects, this project will deliver novel and useful statistical optimization methods that benefit all relevant scientific areas. The project will deliver easy-to-use software packages which directly help scientists to explore and analyze complex datasets. Both PIs will also design and develop new classes to teach modern techniques in handling big data optimization problems. All the course materials - including lecture notes, problem sets, source code, solutions and working examples - will be freely accessed online. Moreover, both PIs will write tutorial papers and disseminate the results of this research through the internet, academic conferences, workshops, and journals. Through senior theses and potentially the REU (Research Experiences for Undergraduates) program, the proposed project will also actively include undergraduates and engage under-represented minority groups.To achieve these goals, this project develops (i) a new research area named statistical optimization, which incorporates sophisticated statistical thinking into modern optimization, and will effectively bridge machine learning, statistics, optimization, and stochastic analysis; (ii) new theoretical frameworks and computational methods for nonconvex and infinite-dimensional optimization, which will motivate effective optimization methods with theoretical guarantees that are applicable to a wide variety of prominent statistical models; (iii) new scalable optimization methods, which aim at fully harnessing the horsepower of modern large-scale distributed computing infrastructure. The project will shed new theoretical light on large-scale optimization, advance practice through novel algorithms and software, and demonstrate the methods on challenging bio-informatics problems.
该项目开发新一代优化方法,以解决大规模科学数据分析中的数据挖掘和知识发现挑战。该项目是在现代计算架构使我们能够在大型复杂数据集(大数据)上拟合复杂统计模型(大模型)的背景下构建的。 然而,尽管大数据、大模型和现代计算架构的各个子领域都取得了重大进展,但我们仍然缺乏强大的优化技术来有效地集成这些关键组件。一个重要的瓶颈是许多通用优化方法并不是专门针对统计学习问题而设计的。即使其中一些是为了利用特定的问题结构而定制的,但它们实际上并没有将复杂的统计思维纳入算法设计和分析中。为了解决这一瓶颈,该项目扩展了传统理论,为非传统优化问题(例如非凸和无限维示例)开辟了新的可能性。 该项目对优化中的几个具有挑战性的问题(例如非凸性)进行了更深入的理论理解,开发了在大数据时代带来更好的实用方法的新算法,并展示了具有挑战性的生物信息学问题的新方法。该项目与 NSF 促进大数据研究的使命密切相关,并将产生广泛的影响。在大数据时代,我们迫切需要强大的优化方法来处理现代数据集日益复杂的情况。 然而,我们仍然缺乏足够的方法、理论和计算技术。 通过同时解决这些方面,该项目将提供新颖且有用的统计优化方法,使所有相关科学领域受益。该项目将提供易于使用的软件包,直接帮助科学家探索和分析复杂的数据集。 两位 PI 还将设计和开发新课程,教授处理大数据优化问题的现代技术。所有课程材料——包括讲稿、问题集、源代码、解决方案和工作示例——都可以在线免费获取。 此外,两位 PI 都会撰写教程论文,并通过互联网、学术会议、研讨会和期刊传播这项研究成果。 通过高级论文和潜在的 REU(本科生研究经验)计划,拟议项目还将积极吸收本科生并吸引代表性不足的少数群体。为了实现这些目标,该项目开发了(i)一个名为统计优化的新研究领域,它将复杂的统计思维融入现代优化中,并将有效地连接机器学习、统计、优化和随机分析; (ii) 非凸和无限维优化的新理论框架和计算方法,这将激发有效的优化方法,并具有适用于各种重要统计模型的理论保证; (iii) 新的可扩展优化方法,旨在充分利用现代大规模分布式计算基础设施的马力。 该项目将为大规模优化提供新的理论依据,通过新颖的算法和软件推进实践,并展示具有挑战性的生物信息学问题的方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Han Liu其他文献

Biomechanics in plant resistance to drought
植物抗旱的生物力学
  • DOI:
    10.1007/s10409-020-00980-1
  • 发表时间:
    2020-09
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Shaobao Liu;Han Liu;Jiaojiao Jiao;Jun Yin;Tiian Jian Lu;Feng Xu
  • 通讯作者:
    Feng Xu
Housing Wealth And Consumption: Effects of Total versus Asset Appreciation Return
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Han Liu
  • 通讯作者:
    Han Liu
Downregulation of RIP140 in hepatocellular carcinoma promoted the growth and migration of the cancer cells
肝细胞癌中RIP140的下调促进癌细胞的生长和迁移
  • DOI:
    10.1007/s13277-014-2815-y
  • 发表时间:
    2014-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hongtao Pan;Han Liu;Sheng Shen;Houbao Liu
  • 通讯作者:
    Houbao Liu
Structural design of a coaxial-jet vortex powder mixer for multi-material directed energy deposition
用于多材料定向能量沉积的同轴喷射涡流粉末混合器的结构设计
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Guo;Xiaowei Zhang;Yibo Han;Meng Xu;Han Liu;Jingxuan Ao;Yaozeng Cai;Jinzhe Wang;Mingzong Wang
  • 通讯作者:
    Mingzong Wang
Multifunctional theranostic nanoparticles for multi-modal imaging-guided CAR-T immunotherapy and chemo-photothermal combinational therapy of non-Hodgkin's lymphoma
用于非霍奇金淋巴瘤多模式成像引导的 CAR-T 免疫治疗和化疗光热联合治疗的多功能治疗诊断纳米颗粒
  • DOI:
    10.1039/d1bm01982a
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    6.6
  • 作者:
    Bowen Shi;Dan Li;Weiwu Yao;Wenfang Wang;Jiang Jiang;Ruiheng Wang;Fuhua Yan;Han Liu;Huan Zhang;Jian Ye
  • 通讯作者:
    Jian Ye

Han Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Han Liu', 18)}}的其他基金

Collaborative Research: TRIPODS Institute for Optimization and Learning
合作研究:TRIPODS 优化与学习研究所
  • 批准号:
    1740735
  • 财政年份:
    2018
  • 资助金额:
    $ 23.77万
  • 项目类别:
    Continuing Grant
BIGDATA: Collaborative Research: F: Stochastic Approximation for Subspace and Multiview Representation Learning
BIGDATA:协作研究:F:子空间和多视图表示学习的随机逼近
  • 批准号:
    1840866
  • 财政年份:
    2017
  • 资助金额:
    $ 23.77万
  • 项目类别:
    Standard Grant
CAREER: An Integrated Inferential Framework for Big Data Research and Education
职业:大数据研究和教育的综合推理框架
  • 批准号:
    1841569
  • 财政年份:
    2017
  • 资助金额:
    $ 23.77万
  • 项目类别:
    Continuing Grant
CAREER: An Integrated Inferential Framework for Big Data Research and Education
职业:大数据研究和教育的综合推理框架
  • 批准号:
    1454377
  • 财政年份:
    2015
  • 资助金额:
    $ 23.77万
  • 项目类别:
    Continuing Grant
BIGDATA: Collaborative Research: F: Stochastic Approximation for Subspace and Multiview Representation Learning
BIGDATA:协作研究:F:子空间和多视图表示学习的随机逼近
  • 批准号:
    1546462
  • 财政年份:
    2015
  • 资助金额:
    $ 23.77万
  • 项目类别:
    Standard Grant
RI: Medium: Collaborative Research: Next-Generation Statistical Optimization Methods for Big Data Computing
RI:媒介:协作研究:大数据计算的下一代统计优化方法
  • 批准号:
    1408910
  • 财政年份:
    2014
  • 资助金额:
    $ 23.77万
  • 项目类别:
    Continuing Grant
III: Small: Nonparametric Structure Learning for Complex Scientific Datasets
III:小:复杂科学数据集的非参数结构学习
  • 批准号:
    1332109
  • 财政年份:
    2012
  • 资助金额:
    $ 23.77万
  • 项目类别:
    Continuing Grant
III: Small: Nonparametric Structure Learning for Complex Scientific Datasets
III:小:复杂科学数据集的非参数结构学习
  • 批准号:
    1116730
  • 财政年份:
    2011
  • 资助金额:
    $ 23.77万
  • 项目类别:
    Continuing Grant
SBIR Phase I: Dimensionally Stable Membrane for Chlor-Alkali Production
SBIR 第一阶段:用于氯碱生产的尺寸稳定膜
  • 批准号:
    0637871
  • 财政年份:
    2007
  • 资助金额:
    $ 23.77万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312841
  • 财政年份:
    2023
  • 资助金额:
    $ 23.77万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312842
  • 财政年份:
    2023
  • 资助金额:
    $ 23.77万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
  • 批准号:
    2313151
  • 财政年份:
    2023
  • 资助金额:
    $ 23.77万
  • 项目类别:
    Continuing Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312840
  • 财政年份:
    2023
  • 资助金额:
    $ 23.77万
  • 项目类别:
    Standard Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
  • 批准号:
    2312374
  • 财政年份:
    2023
  • 资助金额:
    $ 23.77万
  • 项目类别:
    Standard Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
  • 批准号:
    2312373
  • 财政年份:
    2023
  • 资助金额:
    $ 23.77万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
  • 批准号:
    2313149
  • 财政年份:
    2023
  • 资助金额:
    $ 23.77万
  • 项目类别:
    Continuing Grant
Collaborative Research: RI: Medium: Superhuman Imitation Learning from Heterogeneous Demonstrations
合作研究:RI:媒介:异质演示中的超人模仿学习
  • 批准号:
    2312955
  • 财政年份:
    2023
  • 资助金额:
    $ 23.77万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Informed, Fair, Efficient, and Incentive-Aware Group Decision Making
协作研究:RI:媒介:知情、公平、高效和具有激励意识的群体决策
  • 批准号:
    2313137
  • 财政年份:
    2023
  • 资助金额:
    $ 23.77万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
  • 批准号:
    2313150
  • 财政年份:
    2023
  • 资助金额:
    $ 23.77万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了