BIGDATA: Collaborative Research: F: Stochastic Approximation for Subspace and Multiview Representation Learning

BIGDATA:协作研究:F:子空间和多视图表示学习的随机逼近

基本信息

  • 批准号:
    1840866
  • 负责人:
  • 金额:
    $ 35.92万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

Unsupervised learning of useful features, or representations, is one of the most basic challenges of machine learning. Unsupervised representation learning techniques capitalize on unlabeled data which is often cheap and abundant and sometimes virtually unlimited. The goal of these ubiquitous techniques is to learn a representation that reveals intrinsic low-dimensional structure in data, disentangles underlying factors of variation by incorporating universal AI priors such as smoothness and sparsity, and is useful across multiple tasks and domains. This project aims to develop new theory and methods for representation learning that can easily scale to large datasets. In particular, this project is concerned with methods for large-scale unsupervised feature learning, including Principal Component Analysis (PCA) and Partial Least Squares (PLS). To capitalize on massive amounts of unlabeled data, this project will develop appropriate computational approaches and study them in the ?data laden? regime. Therefore, instead of viewing representation learning as dimensionality reduction techniques and focusing on an empirical objective on finite data, these methods are studied with the goal of optimizing a population objective based on sample. This view suggests using Stochastic Approximation approaches, such as Stochastic Gradient Descent (SGD) and Stochastic Mirror Descent, that are incremental in nature and process each new sample with a computationally cheap update. Furthermore, this view enables a rigorous analysis of benefits of stochastic approximation algorithms over traditional finite-data methods. The project aims to develop stochastic approximation approaches to PCA and PLS and related problems and extensions, including deep, and sparse variants, and analyze these problems in the data-laden regime.
有用特征或表示的无监督学习是机器学习最基本的挑战之一。无监督表示学习技术利用未标记的数据,这些数据通常是廉价和丰富的,有时几乎是无限的。这些无处不在的技术的目标是学习一种表示,揭示数据中的内在低维结构,通过结合通用AI先验(如平滑性和稀疏性)来解开潜在的变化因素,并在多个任务和领域中有用。该项目旨在开发新的理论和方法,用于表示学习,可以轻松扩展到大型数据集。特别是,该项目涉及大规模无监督特征学习的方法,包括主成分分析(PCA)和偏最小二乘(PLS)。为了利用大量的未标记的数据,该项目将开发适当的计算方法,并在?数据负载?政权因此,这些方法不是将表示学习视为降维技术并专注于有限数据上的经验目标,而是以基于样本优化群体目标为目标进行研究。这种观点建议使用随机近似方法,如随机梯度下降(SGD)和随机镜像下降,这些方法本质上是增量的,并且使用计算成本较低的更新来处理每个新样本。此外,这一观点使得严格的分析的好处随机逼近算法在传统的有限数据方法。该项目旨在开发PCA和PLS的随机近似方法以及相关问题和扩展,包括深度和稀疏变量,并在数据负载制度中分析这些问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Han Liu其他文献

Biomechanics in plant resistance to drought
植物抗旱的生物力学
  • DOI:
    10.1007/s10409-020-00980-1
  • 发表时间:
    2020-09
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Shaobao Liu;Han Liu;Jiaojiao Jiao;Jun Yin;Tiian Jian Lu;Feng Xu
  • 通讯作者:
    Feng Xu
Housing Wealth And Consumption: Effects of Total versus Asset Appreciation Return
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Han Liu
  • 通讯作者:
    Han Liu
Downregulation of RIP140 in hepatocellular carcinoma promoted the growth and migration of the cancer cells
肝细胞癌中RIP140的下调促进癌细胞的生长和迁移
  • DOI:
    10.1007/s13277-014-2815-y
  • 发表时间:
    2014-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hongtao Pan;Han Liu;Sheng Shen;Houbao Liu
  • 通讯作者:
    Houbao Liu
Structural design of a coaxial-jet vortex powder mixer for multi-material directed energy deposition
用于多材料定向能量沉积的同轴喷射涡流粉末混合器的结构设计
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Guo;Xiaowei Zhang;Yibo Han;Meng Xu;Han Liu;Jingxuan Ao;Yaozeng Cai;Jinzhe Wang;Mingzong Wang
  • 通讯作者:
    Mingzong Wang
Multifunctional theranostic nanoparticles for multi-modal imaging-guided CAR-T immunotherapy and chemo-photothermal combinational therapy of non-Hodgkin's lymphoma
用于非霍奇金淋巴瘤多模式成像引导的 CAR-T 免疫治疗和化疗光热联合治疗的多功能治疗诊断纳米颗粒
  • DOI:
    10.1039/d1bm01982a
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    6.6
  • 作者:
    Bowen Shi;Dan Li;Weiwu Yao;Wenfang Wang;Jiang Jiang;Ruiheng Wang;Fuhua Yan;Han Liu;Huan Zhang;Jian Ye
  • 通讯作者:
    Jian Ye

Han Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Han Liu', 18)}}的其他基金

Collaborative Research: TRIPODS Institute for Optimization and Learning
合作研究:TRIPODS 优化与学习研究所
  • 批准号:
    1740735
  • 财政年份:
    2018
  • 资助金额:
    $ 35.92万
  • 项目类别:
    Continuing Grant
RI: Medium: Collaborative Research: Next-Generation Statistical Optimization Methods for Big Data Computing
RI:媒介:协作研究:大数据计算的下一代统计优化方法
  • 批准号:
    1840857
  • 财政年份:
    2017
  • 资助金额:
    $ 35.92万
  • 项目类别:
    Continuing Grant
CAREER: An Integrated Inferential Framework for Big Data Research and Education
职业:大数据研究和教育的综合推理框架
  • 批准号:
    1841569
  • 财政年份:
    2017
  • 资助金额:
    $ 35.92万
  • 项目类别:
    Continuing Grant
CAREER: An Integrated Inferential Framework for Big Data Research and Education
职业:大数据研究和教育的综合推理框架
  • 批准号:
    1454377
  • 财政年份:
    2015
  • 资助金额:
    $ 35.92万
  • 项目类别:
    Continuing Grant
BIGDATA: Collaborative Research: F: Stochastic Approximation for Subspace and Multiview Representation Learning
BIGDATA:协作研究:F:子空间和多视图表示学习的随机逼近
  • 批准号:
    1546462
  • 财政年份:
    2015
  • 资助金额:
    $ 35.92万
  • 项目类别:
    Standard Grant
RI: Medium: Collaborative Research: Next-Generation Statistical Optimization Methods for Big Data Computing
RI:媒介:协作研究:大数据计算的下一代统计优化方法
  • 批准号:
    1408910
  • 财政年份:
    2014
  • 资助金额:
    $ 35.92万
  • 项目类别:
    Continuing Grant
III: Small: Nonparametric Structure Learning for Complex Scientific Datasets
III:小:复杂科学数据集的非参数结构学习
  • 批准号:
    1332109
  • 财政年份:
    2012
  • 资助金额:
    $ 35.92万
  • 项目类别:
    Continuing Grant
III: Small: Nonparametric Structure Learning for Complex Scientific Datasets
III:小:复杂科学数据集的非参数结构学习
  • 批准号:
    1116730
  • 财政年份:
    2011
  • 资助金额:
    $ 35.92万
  • 项目类别:
    Continuing Grant
SBIR Phase I: Dimensionally Stable Membrane for Chlor-Alkali Production
SBIR 第一阶段:用于氯碱生产的尺寸稳定膜
  • 批准号:
    0637871
  • 财政年份:
    2007
  • 资助金额:
    $ 35.92万
  • 项目类别:
    Standard Grant

相似海外基金

BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
  • 批准号:
    2348159
  • 财政年份:
    2023
  • 资助金额:
    $ 35.92万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
  • 批准号:
    2308649
  • 财政年份:
    2022
  • 资助金额:
    $ 35.92万
  • 项目类别:
    Standard Grant
BIGDATA: Collaborative Research: F: Holistic Optimization of Data-Driven Applications
BIGDATA:协作研究:F:数据驱动应用程序的整体优化
  • 批准号:
    2027516
  • 财政年份:
    2020
  • 资助金额:
    $ 35.92万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Practical Analysis of Large-Scale Data with Lyme Disease Case Study
BIGDATA:F:协作研究:莱姆病案例研究大规模数据的实际分析
  • 批准号:
    1934319
  • 财政年份:
    2019
  • 资助金额:
    $ 35.92万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Protecting Yourself from Wildfire Smoke: Big Data-Driven Adaptive Air Quality Prediction Methodologies
大数据:IA:协作研究:保护自己免受野火烟雾的侵害:大数据驱动的自适应空气质量预测方法
  • 批准号:
    1838022
  • 财政年份:
    2019
  • 资助金额:
    $ 35.92万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Foundations of Responsible Data Management
大数据:F:协作研究:负责任的数据管理的基础
  • 批准号:
    1926250
  • 财政年份:
    2019
  • 资助金额:
    $ 35.92万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
  • 批准号:
    1947584
  • 财政年份:
    2019
  • 资助金额:
    $ 35.92万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
  • 批准号:
    1837964
  • 财政年份:
    2019
  • 资助金额:
    $ 35.92万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Optimizing Log-Structured-Merge-Based Big Data Management Systems
BIGDATA:F:协作研究:优化基于日志结构合并的大数据管理系统
  • 批准号:
    1838222
  • 财政年份:
    2019
  • 资助金额:
    $ 35.92万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Optimizing Log-Structured-Merge-Based Big Data Management Systems
BIGDATA:F:协作研究:优化基于日志结构合并的大数据管理系统
  • 批准号:
    1838248
  • 财政年份:
    2019
  • 资助金额:
    $ 35.92万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了