EAGER: Perceptions of Fairness and Justice in AI Software for Talent Acquisition
EAGER:对人工智能软件人才招聘公平正义的看法
基本信息
- 批准号:1841368
- 负责人:
- 金额:$ 22.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-01-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Perceived fairness and justice in job recruiting and hiring are influenced by several factors. Some factors are the consistency of the decision-making process across people and time, timely and informative feedback, propriety of the interview questions, and the extent to which pre-employment tests appear to relate to the job requirements. These factors come together to influence decisions about recruiting and hiring and are being made increasingly with the help of artificial intelligence (AI). In this project, a sociotechnical frame is applied to explore perceptions of fairness and justice of AI-supported talent acquisition algorithms. the investigator will elicit and analyze perceptions of human resources personnel, African American job seekers, and AI software designers. The outcomes will be used to inform the design of bias recognition and mitigation procedures and technologies for both humans and the algorithms being used.The intellectual merit of this exploratory study is the development of qualitative instruments and metrics that can be used to measure perceptions of algorithmic fairness and justice. The research approach extends a theory of procedural rules for perceived fairness of selection systems by using a three-pronged approach comprising job seekers who are under-represented in the IT industry, human resource professionals who manage the talent acquisition process, and IT professionals who design AI software with fairness as the core value in product design and development. Perceptions using scenarios are examined as well as the actual experiences of jobseekers who are affected by these decisions. This research contributes to an assessment of algorithmic fairness at a time when there is currently little insight into how historically marginalized populations might perceive or be adversely affected by AI systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
工作招聘和雇佣中的公平感和正义感受到几个因素的影响。一些因素是决策过程在人员和时间上的一致性,及时和信息丰富的反馈,面试问题的适当性,以及就业前测试与工作要求的关系程度。这些因素共同影响着招聘和雇佣的决定,并且越来越多地在人工智能(AI)的帮助下做出。在这个项目中,应用社会技术框架来探索人工智能支持的人才获取算法的公平性和正义性。研究者将引出并分析人力资源人员、非裔美国求职者和人工智能软件设计师的看法。结果将用于为人类和正在使用的算法提供偏见识别和减轻程序和技术的设计信息。这项探索性研究的智力价值在于开发了定性工具和指标,可用于衡量对算法公平和正义的看法。该研究方法通过使用三管齐下的方法扩展了选择系统公平感的程序规则理论,包括在IT行业中代表性不足的求职者、管理人才获取过程的人力资源专业人员以及在产品设计和开发中以公平为核心价值设计人工智能软件的IT专业人员。使用场景的感知以及受这些决定影响的求职者的实际经验被检查。在目前对历史上被边缘化的人群如何看待或受到人工智能系统的不利影响知之甚少的情况下,这项研究有助于评估算法的公平性。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Algorithmic equity in the hiring of underrepresented IT job candidates
招聘代表性不足的 IT 求职者时的算法公平性
- DOI:10.1108/oir-10-2018-0334
- 发表时间:2019
- 期刊:
- 影响因子:3.1
- 作者:Yarger, Lynette;Cobb Payton, Fay;Neupane, Bikalpa
- 通讯作者:Neupane, Bikalpa
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lynette Yarger其他文献
Humanizing STEM education: an ecological systems framework for educating the whole student
人性化的 STEM 教育:全面教育学生的生态系统框架
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:2.3
- 作者:
Christina Yao;Andrea Follmer Greenhoot;Kelly Mack;Chandra Myrick;Johnny Poolaw;Linda Powell;Lynette Yarger - 通讯作者:
Lynette Yarger
Lynette Yarger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lynette Yarger', 18)}}的其他基金
BPC-DP: Cultivating Academic Inclusion and Career Engagement to Increase the Persistence of Minoritized Students in Computing
BPC-DP:培养学术包容性和职业参与度,以提高少数族裔学生对计算机的坚持
- 批准号:
2216540 - 财政年份:2022
- 资助金额:
$ 22.51万 - 项目类别:
Standard Grant
GSE/RES- Collaborative Research - Practical Logic of STEM Career Choice: A Critical Interpretive approach to profiling IT Career Pathways of African American Males at HBCUs
GSE/RES- 合作研究 - STEM 职业选择的实用逻辑:一种批判性解释方法来分析 HBCU 中非裔美国男性的 IT 职业道路
- 批准号:
1232344 - 财政年份:2012
- 资助金额:
$ 22.51万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: Developing a Culturally Compelling Social Network Approach to HIV/AIDS Prevention for African American College Students
EAGER:合作研究:为非洲裔美国大学生开发一种具有文化吸引力的社交网络方法来预防艾滋病毒/艾滋病
- 批准号:
1144340 - 财政年份:2011
- 资助金额:
$ 22.51万 - 项目类别:
Standard Grant
CAREER: Broadening the Participation of Historically Underserved Groups in the Information Society
事业:扩大历史上服务不足的群体对信息社会的参与
- 批准号:
0238009 - 财政年份:2003
- 资助金额:
$ 22.51万 - 项目类别:
Continuing Grant
相似海外基金
Postdoctoral Fellowship: STEMEdIPRF: Towards a Diverse Professoriate: Experiences that Inform Underrepresented Scholars' Perceptions of Value Alignment and Career Decisions
博士后奖学金:STEMEdIPRF:走向多元化的教授职称:为代表性不足的学者对价值调整和职业决策的看法提供信息的经验
- 批准号:
2327411 - 财政年份:2024
- 资助金额:
$ 22.51万 - 项目类别:
Standard Grant
Heian Jingu and Jidai Matsuri: Changing Meanings and Perceptions from Their Creation to the Present
平安神宫和时代祭:从其诞生到现在的意义和认知的变化
- 批准号:
24K03398 - 财政年份:2024
- 资助金额:
$ 22.51万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Perceptions, practices, autonomy levels and other variations among teachers who use AI teaching tools
使用人工智能教学工具的教师的认知、实践、自主水平和其他差异
- 批准号:
24K16628 - 财政年份:2024
- 资助金额:
$ 22.51万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Postdoctoral Fellowship: STEMEdIPRF: Increasing geoscience enrollment and engagement by transforming perceptions of geoscience among students and the general public
博士后奖学金:STEMEdIPRF:通过改变学生和公众对地球科学的看法来增加地球科学的入学率和参与度
- 批准号:
2327348 - 财政年份:2024
- 资助金额:
$ 22.51万 - 项目类别:
Standard Grant
Collaborative Research: U.S. institutions after COVID-19: Trust, accountability, and public perceptions
合作研究:COVID-19 后的美国机构:信任、责任和公众看法
- 批准号:
2422394 - 财政年份:2024
- 资助金额:
$ 22.51万 - 项目类别:
Standard Grant
Mindset Dynamics: Using the Perception Clarity Methodology (PCM) to shift perceptions
心态动态:使用感知清晰度方法 (PCM) 来转变认知
- 批准号:
ES/Y011015/1 - 财政年份:2024
- 资助金额:
$ 22.51万 - 项目类别:
Research Grant
Reframing arrival: Transnational perspectives on perceptions, governance and practices - REFRAME.
重构到来:关于认知、治理和实践的跨国视角 - REFRAME。
- 批准号:
AH/Y00759X/1 - 财政年份:2024
- 资助金额:
$ 22.51万 - 项目类别:
Research Grant
RAPID: DRL AI: Understanding Perceptions and Use of AI in K-12 Education Using a Nationally Representative Sample
RAPID:DRL AI:使用全国代表性样本了解 K-12 教育中 AI 的认知和使用
- 批准号:
2334172 - 财政年份:2024
- 资助金额:
$ 22.51万 - 项目类别:
Standard Grant
Research Initiation: Addressing the Readiness Gap through Examining Engineering Students' Perceptions of their Future Professional Selves
研究启动:通过检查工科学生对未来职业自我的看法来解决准备差距
- 批准号:
2306178 - 财政年份:2023
- 资助金额:
$ 22.51万 - 项目类别:
Standard Grant
Broadening Participation Research: Understanding faculty attitudes, competency, and perceptions of providing career advising to African American STEM students at HBCUs
扩大参与研究:了解教师对 HBCU 的非裔美国 STEM 学生提供职业建议的态度、能力和看法
- 批准号:
2306671 - 财政年份:2023
- 资助金额:
$ 22.51万 - 项目类别:
Continuing Grant