EAGER: Exploring Machine Learning and Atmospheric Simulation to Understand the Role of Geomorphic Complexity in Enhancing Civil Infrastructure Damage during Extreme Wind Events
EAGER:探索机器学习和大气模拟,以了解地貌复杂性在加剧极端风事件期间民用基础设施损坏方面的作用
基本信息
- 批准号:1841979
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-15 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Motivated by the extensive damage to Puerto Rico caused by Hurricane Maria's landfall in September 2017, this EArly-concept Grant for Exploratory Research (EAGER) will study how complex topography can accelerate wind and, ultimately, exacerbate damage to buildings and other constructed civil infrastructure. This research will utilize recent advancements in machine learning and weather forecasting to predict wind speed-up in mountainous terrain and other complex terrestrial environments. The project will leverage the NSF-supported Natural Hazards Engineering Research Infrastructure (NHERI) Terraformer Boundary Layer Wind Tunnel (BLWT) at the University of Florida to characterize the surface wind field over geometrically scaled models of Puerto Rico and the municipal Islands of Vieques and Culebra. This EAGER is a collaboration between the University of Florida (which serves the most hurricane prone state in the U.S.) and the University of Puerto Rico at Mayaguez (a Hispanic-serving institution still recovering from Hurricane Maria), and graduate and undergraduate students from both institutions will be actively involved in the experimental and computational work. Anticipated project outcomes will include important new insights about the influence of topography on the behavior of damaging winds, new scientific tools that fuse experimentation with advanced computing methods to study extreme wind effects on constructed civil infrastructure, and benchmark datasets that will be made available to other researchers in the NHERI Data Depot (https://www.DesignSafe-ci.org). Knowledge created by this project can inform future research studies and wind load provisions to improve the resilience of the U.S. to hurricane impacts, and thus better secure the nation's welfare and prosperity after windstorm events. This research will make knowledge advancements on multiple fronts. It will investigate topographic wind effects (i.e., speed-up) on Puerto Rico, with the goal of advancing understanding of how geomorphic complexity (topography) enhances surface winds and makes civil infrastructure more vulnerable to damage. Specifically, the research will explore and assess the predictive capability of machine learning and multi-scale atmospheric simulation, i.e., computational fluid dynamics nested within a numerical weather prediction (NWP) framework. To support this effort, high-resolution stereoscopic velocity fields over geometrically scaled models of Puerto Rico and the municipal Islands of Vieques and Culebra will be collected from a precision-guided particle image velocimetry system in the Terraformer BLWT. Experiments will be designed to yield critical insights for improving BLWT modeling, while producing foundational datasets to assess the efficacy of (a) supervised regression-based machine learning at predicting how changes in the upwind elevation modify flows and (b) supervised classification-based machine learning methods for determining where "special" wind regions should apply in structural wind load provisioning. Concurrently, NWP enhanced with large eddy simulation (LES) will be applied to demonstrate that NWP-LES can improve the hindcasting of a hurricane's wind field in the built environment. If successful, this effort can critically aid the engineering and atmospheric science fields in reaching consensus on standardizing approaches to predict the behavior of surface winds during an extreme wind event.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
由于飓风玛丽亚在2017年9月登陆对波多黎各造成了广泛的破坏,这项早期概念的探索性研究补助金(EAGER)将研究复杂的地形如何加速风力,并最终加剧对建筑物和其他民用基础设施的破坏。 这项研究将利用机器学习和天气预报的最新进展来预测山区地形和其他复杂陆地环境中的风速。该项目将利用佛罗里达大学的自然灾害工程研究基础设施(NHERI)地形形成器边界层风洞(BLWT)来描述波多黎各和别克斯岛和库莱布拉自治岛的几何比例模型上的表面风场。这个EAGER是佛罗里达大学(为美国最容易发生飓风的州提供服务)和位于马亚圭斯的波多黎各大学(一所为西班牙裔学生服务的机构,仍在从飓风玛丽亚中恢复过来),这两个机构的研究生和本科生将积极参与实验和计算工作。 预期的项目成果将包括关于地形对破坏性风行为的影响的重要新见解,将实验与先进计算方法融合在一起的新科学工具,以研究极端风对建筑民用基础设施的影响,以及将提供给NHERI数据库(https://www.example.com)中其他研究人员的基准数据集。www.DesignSafe-ci.org 该项目所创造的知识可以为未来的研究和风荷载规定提供信息,以提高美国对飓风影响的抵御能力,从而更好地确保国家在风暴事件后的福利和繁荣。 这项研究将在多个方面推动知识进步。 它将调查地形风的影响(即,在波多黎各,我们将进行一次加速试验,目的是加深对地貌复杂性(地形)如何增强地表风并使民用基础设施更容易受到破坏的理解。 具体而言,该研究将探索和评估机器学习和多尺度大气模拟的预测能力,即,嵌套在数值天气预报(NWP)框架内的计算流体动力学。为了支持这一努力,将从Terraformer BLWT中的精确制导粒子图像测速系统收集波多黎各和别克斯岛及库莱布拉自治岛的几何比例模型上的高分辨率立体速度场。实验将被设计为产生关键的见解,以改善BLWT建模,同时产生基础数据集,以评估(a)基于监督回归的机器学习在预测逆风海拔变化如何修改流量和(B)基于监督分类的机器学习方法的有效性,以确定“特殊”风区应适用于结构风荷载供应。 与此同时,数值预报增强大涡模拟(LES)将被应用于证明,NWP-LES可以改善后报的飓风的风场在建筑环境。如果成功的话,这一努力将极大地帮助工程和大气科学领域就极端风事件期间地面风行为预测的标准化方法达成共识。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Predicting Topographic Effect Multipliers in Complex Terrain With Shallow Neural Networks
- DOI:10.3389/fbuil.2022.762054
- 发表时间:2022-05
- 期刊:
- 影响因子:0
- 作者:J. Santiago-Hernandez;A. R. Santiago;R. A. Catarelli;B. M. Phillips;L. D. Aponte-Bermúdez;F. Masters;Yanlin Guo;Guowei Qian
- 通讯作者:J. Santiago-Hernandez;A. R. Santiago;R. A. Catarelli;B. M. Phillips;L. D. Aponte-Bermúdez;F. Masters;Yanlin Guo;Guowei Qian
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Forrest Masters其他文献
Forrest Masters的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Forrest Masters', 18)}}的其他基金
Natural Hazards Engineering Research Infrastructure: Experimental Facility with Boundary Layer Wind Tunnel, Wind Load and Dynamic Flow Simulators, and Pressure Loading Actuators
自然灾害工程研究基础设施:边界层风洞、风荷载和动态流动模拟器以及压力加载执行器的实验设施
- 批准号:
1520843 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Cooperative Agreement
MRI: Development of a Versatile, Self-Configuring Turbulent Flow Condition System for a Shared-Use Hybrid Low-Speed Wind Tunnel
MRI:为共享混合低速风洞开发多功能、自配置湍流条件系统
- 批准号:
1428954 - 财政年份:2014
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAREER: Behavior of Hurricane Wind and Wind-Driven Rain in the Coastal Suburban Roughness Sublayer
职业:沿海郊区粗糙次层中飓风和风雨的行为
- 批准号:
1055744 - 财政年份:2011
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Advancing Performance Based Design through Full-Scale Simulation of Wind, Water and Structural Interaction
通过风、水和结构相互作用的全面模拟推进基于性能的设计
- 批准号:
0729739 - 财政年份:2006
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Advancing Performance Based Design through Full-Scale Simulation of Wind, Water and Structural Interaction
通过风、水和结构相互作用的全面模拟推进基于性能的设计
- 批准号:
0533335 - 财政年份:2005
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似国自然基金
Exploring Changing Fertility Intentions in China
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
- 批准号:W2433169
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
相似海外基金
Exploring Theory and Design Principles (ETD): Auditing Machine Learning Applications for Algorithmic Justice with Computer Science High School Students and Teachers
探索理论和设计原则 (ETD):与计算机科学高中学生和教师一起审核机器学习应用程序的算法正义
- 批准号:
2342438 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAREER: Exploring Mixed-Signal Computation for Energy-Efficient and Robust Brain-Machine Interfaces
职业:探索节能且鲁棒的脑机接口的混合信号计算
- 批准号:
2338159 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
CAREER: Exploring and Exploiting Data-Centric Modeling for Fairness in Machine Learning
职业:探索和利用以数据为中心的建模以实现机器学习的公平性
- 批准号:
2239257 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Research Initiation Award: Exploring Class A G-Protein Coupled Receptors (GPCRs)-Ligand Interaction through Machine Learning Approaches
研究启动奖:通过机器学习方法探索 A 类 G 蛋白偶联受体 (GPCR)-配体相互作用
- 批准号:
2300475 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Peering Inside the Black Box: Exploring Innovations in Interpretable Machine Learning and Causal Inference for the Explanation of Political Violence
窥视黑匣子:探索可解释的机器学习和因果推理的创新以解释政治暴力
- 批准号:
2901789 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Studentship
Postdoctoral Fellowship: EAR-PF: Exploring the significance of the spatial field from integrated DInSAR+GNSS time series for machine learning and volcano early warning applications
博士后奖学金:EAR-PF:探索集成 DInSAR GNSS 时间序列的空间场对于机器学习和火山预警应用的重要性
- 批准号:
2304871 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Fellowship Award
Exploring the Potential Clinical Application of Pulse Arrival Time for Assessing Arterial Stiffness Using Machine Learning Algorithms
使用机器学习算法探索脉冲到达时间评估动脉僵硬度的潜在临床应用
- 批准号:
2649903 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Studentship
Accelerating the discovery of next-generation cancer therapeutics through exploring protein fitness landscapes using a machine learning-driven evolution engine
使用机器学习驱动的进化引擎探索蛋白质适应性景观,加速下一代癌症疗法的发现
- 批准号:
10032925 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Collaborative R&D
Exploring Efficient Automated Design Choices for Robust Machine Learning Algorithms
探索稳健的机器学习算法的高效自动化设计选择
- 批准号:
2748823 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Studentship
Exploring the Intersection of Set Proximity, Parallel Computing, and Machine Learning
探索集合邻近度、并行计算和机器学习的交叉点
- 批准号:
RGPIN-2018-04088 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




