BTT EAGER: Improving Crop Yield Prediction by Integrating Machine Learning with Process-Based Crop Models
BTT EAGER:通过将机器学习与基于过程的作物模型相结合来改进作物产量预测
基本信息
- 批准号:1842097
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-03-01 至 2023-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Predicting crop yield is central to addressing emerging challenges in food security, particularly in an era of global climate change. Currently, machine learning and crop modeling are among the most commonly used approaches for yield prediction. This award supports fundamental research to combine the strengths of machine learning and crop models. Machine learning algorithms will be used to predict intermediate plant traits, which will then be fed into a crop model to predict grain yields across different environment and field management practices. Both conception and execution of this EAGER project depend on collaborations across multiple disciplines, including high-throughput phenotyping, object recognition, machine learning, optimization, computer simulation, and crop modeling. If successful, this research is expected to improve not only accuracy but also interpretability of yield prediction models, which will open numerous opportunities for downstream research and discoveries. The interdisciplinary effort will enhance the impact of science and engineering education across disciplines, while providing a collaborative and inclusive environment for all students to engage in cutting edge research activities.Underlying yield prediction is one of the grand challenges of biology: understanding how phenotype is determined by genotype, environment, and their interactions. Machine learning algorithms are able to predict crop phenotype to reasonable accuracy based on genotype information, but most models have a black box structure and their results are hard to interpret. On the other hand, crop models offer biological insights into causes of phenotypic variation by providing explicit explanations of the interactions between traits and environmental conditions in different phases of the crop growth cycle, but the collection of trait measurement data and calibration of model coefficients are labor intensive, time consuming, and costly. The proposed approach is a nested model. Deep learning algorithms will be trained to predict leaf appearance rate from genotype and empirically measured trait data. Training data will be extracted from images of plant leaves obtained via field experiments that employ novel phenotyping technique. Next, the resulting predicted traits and environment data will be fed into the crop model to predict yield. If proven effective, this approach can be applied to study other plant traits to improve crop yield prediction.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
预测农作物产量对于应对粮食安全方面新出现的挑战至关重要,特别是在全球气候变化时代。目前,机器学习和作物建模是最常用的产量预测方法之一。该奖项支持基础研究将机器学习和作物模型的优势联合收割机结合起来。机器学习算法将用于预测中间植物性状,然后将其输入作物模型,以预测不同环境和田间管理实践中的谷物产量。EAGER项目的概念和执行都依赖于多个学科的合作,包括高通量表型分析、对象识别、机器学习、优化、计算机模拟和作物建模。如果成功的话,这项研究预计不仅可以提高准确性,还可以提高产量预测模型的可解释性,这将为下游研究和发现提供许多机会。跨学科的努力将提高跨学科的科学和工程教育的影响,同时为所有学生提供一个合作和包容的环境,从事尖端的研究活动。潜在的产量预测是生物学的重大挑战之一:了解表型是如何由基因型,环境,以及它们的相互作用决定的。机器学习算法能够基于基因型信息以合理的精度预测作物表型,但大多数模型具有黑箱结构,其结果难以解释。另一方面,作物模型通过明确解释作物生长周期不同阶段性状与环境条件之间的相互作用,提供了对表型变异原因的生物学见解,但性状测量数据的收集和模型系数的校准是劳动密集型的,耗时且成本高昂。所提出的方法是一个嵌套模型。将训练深度学习算法,以根据基因型和经验测量的性状数据预测叶片出现率。训练数据将从通过采用新型表型分析技术的田间实验获得的植物叶片图像中提取。接下来,所得到的预测性状和环境数据将被输入作物模型以预测产量。如果证明有效,这种方法可以应用于研究其他植物性状,以提高作物产量预测。这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lizhi Wang其他文献
Effects of Nutritional Deprivation and Re-Alimentation on the Feed Efficiency, Blood Biochemistry, and Rumen Microflora in Yaks (Bos grunniens)
营养剥夺和重新营养对牦牛 (Bos grunniens) 饲料效率、血液生化和瘤胃微生物区系的影响
- DOI:
10.3390/ani9100807 - 发表时间:
2019-10 - 期刊:
- 影响因子:3
- 作者:
Huawei Zou;Rui Hu;Zhisheng Wang;Ali Shah;Shaoyu Zeng;Quanhui Peng;Bai Xue;Lizhi Wang;Xiangfei Zhang;Xueying Wang;Junhua Shi;Fengpeng Li;Lei Zeng - 通讯作者:
Lei Zeng
Mismatched Multiplex PCR Amplification and Subsequent RFLP Analysis to Simultaneously Identify Polymorphisms of Erythrocytic ESD, GLO1, and GPT Genes *
不匹配的多重 PCR 扩增和随后的 RFLP 分析可同时识别红细胞 ESD、GLO1 和 GPT 基因的多态性 *
- DOI:
10.1111/j.1556-4029.2010.01573.x - 发表时间:
2011 - 期刊:
- 影响因子:1.6
- 作者:
H. Pang;Ye Ding;Yan Li;Lizhi Wang;X. Tian;Bao;M. Ding - 通讯作者:
M. Ding
Cobalt-catalyzed Aerobic Oxidation of Eugenol to Vanillin and Vanillic Acid
钴催化丁子香酚有氧氧化生成香草醛和香草酸
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
H. Mao;Lizhi Wang;Feifei Zhao;Jianxin Wu;Haohua Huo;Jun Yu - 通讯作者:
Jun Yu
Selective transformation and removal of As(III) by constructed Fe−N bonds: The generation of singlet oxygen from the photoexcitation of MnPc leads to abundant ZnFe−LDH interface OH radical
- DOI:
10.1016/j.scitotenv.2023.164314 - 发表时间:
2023 - 期刊:
- 影响因子:
- 作者:
Huidi Zhang;Yao Deng;Junhui Yang;Jinglin Yin;Jing Wang;Hongbo Xiao;Lizhi Wang;Cuihong Zhang;Wenlei Wang - 通讯作者:
Wenlei Wang
Effects of forage feeding to calves on performance, rumen fermentation, and nutrient digestibility: A meta-analysis
饲喂奶犊对其生产性能、瘤胃发酵和养分消化率的影响:一项荟萃分析
- DOI:
10.3168/jds.2024-24917 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:4.400
- 作者:
Jianxin Xiao;Jia Tian;Yingqi Peng;Rui Hu;Quanhui Peng;Lizhi Wang;Bai Xue;Zhisheng Wang - 通讯作者:
Zhisheng Wang
Lizhi Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lizhi Wang', 18)}}的其他基金
LEAP-HI/GOALI: Engineering Crops for Genetic Adaptation to Changing Enviroments
LEAP-HI/GOALI:基因改造作物以适应不断变化的环境
- 批准号:
2421965 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
LEAP-HI/GOALI: Engineering Crops for Genetic Adaptation to Changing Enviroments
LEAP-HI/GOALI:基因改造作物以适应不断变化的环境
- 批准号:
1830478 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似海外基金
Education DCL: EAGER: Developing a Cyber-Aerial Computing Curriculum for Improving Sky-of-Privacy-Things Education through a Modular-Based Integrated Framework
教育 DCL:EAGER:开发网络航空计算课程,通过基于模块化的集成框架改善隐私天空教育
- 批准号:
2335681 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: A bio-inspired approach for improving ice-prevention and ice-removal
EAGER:一种改善防冰和除冰的仿生方法
- 批准号:
2337118 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: INFORMATE: Improving networks for organizational repositories through metadata augmentation, transformation and evolution
渴望:信息:通过元数据增强、转型和发展改善组织存储库网络
- 批准号:
2334426 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: DCL: SaTC: Enabling Interdisciplinary Collaboration: Improving Human Discernment of Audio Deepfakes via Multi-level Information Augmentation
EAGER:DCL:SaTC:实现跨学科合作:通过多级信息增强提高人类对音频深赝品的识别能力
- 批准号:
2210011 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: Improving the Data Quality of Measurements Collected with Drone-Mounted Sensors: A Fluid Dynamics Perspective with Guidelines for Optimum Sensor Placement and Housing
EAGER:提高无人机安装传感器收集的测量数据质量:流体动力学视角以及最佳传感器放置和外壳指南
- 批准号:
2125997 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: SaTC-EDU: Improving Cybersecurity Education for Adolescents with Autism Through Automated Augmented Self-Monitoring Applications
EAGER:SaTC-EDU:通过自动增强自我监控应用程序改善自闭症青少年的网络安全教育
- 批准号:
2114808 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: Improving the Quality and Reducing the Burden of Producing and Reusing Publicly Accessible Research Data
EAGER:提高可公开访问的研究数据的质量并减轻其负担
- 批准号:
2039677 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: Improving the Aeroacoustic Properties of Hybrid Anechoic Wind Tunnels
EAGER:改善混合消声风洞的气动声学特性
- 批准号:
2012443 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: SaTC: Early-Stage Interdisciplinary Collaboration: Improving the Bug Bounty System
EAGER:SaTC:早期跨学科合作:改进错误赏金系统
- 批准号:
1915815 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CoPe EAGER: Improving the financial recovery from coastal disasters: The role of innovative risk transfer instruments
CoPe EAGER:改善沿海灾害的财务恢复:创新风险转移工具的作用
- 批准号:
1939913 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant














{{item.name}}会员




