EAGER: DCL: SaTC: Enabling Interdisciplinary Collaboration: Improving Human Discernment of Audio Deepfakes via Multi-level Information Augmentation
EAGER:DCL:SaTC:实现跨学科合作:通过多级信息增强提高人类对音频深赝品的识别能力
基本信息
- 批准号:2210011
- 负责人:
- 金额:$ 29.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project increases listeners’ discernment of audio deepfakes through augmentation of information, both technological and sociolinguistic. This project establishes an innovative pathway for collaborative research across sociolinguistics, human centered analytics, and data science and lays the groundwork for future analyses of deepfakes that are broadly relevant across disciplines, informed by human behavioral perspectives. The project will address the societal challenge of misinformation by generating insights that can increase the ability of listeners – particularly college students, whose lives are indelibly shaped by technology – to evaluate the veracity and authenticity of information online. The project's broader significance is to address the societal challenge of misinformation by generating insights that can help empower listeners to make decisions about how to evaluate the veracity and authenticity of information they encounter online. The project improves understanding and modeling of how deepfakes are involved in spreading misinformation and tracking how language technology is adapted for social harm and/or used in unethical ways. The proposed work will increase listeners’ discernment of audio deepfakes through augmentation of information that draws upon integrated interdisciplinary knowledge and advances data augmentation as an important tool for deepfake detection. The objectives of the project are to: (1) Study and evaluate listener perceptions of audio deepfakes that have been created with varying degrees of linguistic complexity; (2) Study and evaluate the efficacy of training sessions that increase listeners’ sociolinguistic perceptual ability and improve their ability to discern deepfake audio content; (3) Augment the audio deepfake discernment via multi-level temporal and linguistic signatures, informed by training and linguistic labeling; (4) Evaluate the impact of augmented signature information on listener perceptions of audio deepfakes; (5) Create open-access online modules and materials with social science and data science student involvement to improve listeners’ discernment of audio cues on a wider public scale.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目通过扩大技术和社会语言学的信息来增加听众对音频深层的识别。该项目为跨社会语言学,以人类为中心的分析和数据科学的合作研究建立了创新的途径,并为未来分析的深层分析奠定了基础,这些分析是由人类行为观点所启发的,跨学科广泛相关。该项目将通过产生能够提高听众的能力(尤其是由技术塑造的生活的大学生)来评估信息在线信息的真实性和真实性的能力来解决错误信息的社会挑战。该项目的更广泛的意义是通过产生洞察力来应对失误的社会挑战,这些见解可以帮助授权听众做出有关如何评估他们在线遇到的信息的真实性和真实性的决定。该项目改善了对深层参与传播错误信息的理解和建模,并跟踪语言技术如何以社会伤害和/或以不道德的方式使用。拟议的工作将通过扩大信息来增加听众对音频深击的识别,这些信息借鉴了综合的跨学科知识,并将数据增强作为深层检测的重要工具。该项目的目标是:(1)研究和评估听众对具有不同程度的语言复杂性创造的音频深击的看法; (2)研究和评估培训课程的有效性,以提高听众的社会语言感知能力,并提高其识别Deepfake音频内容的能力; (3)通过培训和语言标签所告知的多级临时和语言标志来增强音频深层识别; (4)评估增强签名信息对听众对音频深击的看法的影响; (5)通过社会科学和数据科学学生参与创建开放访问的在线模块和材料,以提高听众在更广泛的公共规模上辨别音频提示。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子优点和更广泛的影响审查标准来评估通过评估而被认为是宝贵的。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Auto Annotation of Linguistic Features for Audio Deepfake Discernment
- DOI:10.1609/aaaiss.v2i1.27682
- 发表时间:2024-01
- 期刊:
- 影响因子:0
- 作者:Kifekachukwu Nwosu;Chloe Evered;Zahra Khanjani;Noshaba Bhalli;Lavon Davis;Christine Mallinson;V. P. Janeja
- 通讯作者:Kifekachukwu Nwosu;Chloe Evered;Zahra Khanjani;Noshaba Bhalli;Lavon Davis;Christine Mallinson;V. P. Janeja
Learning to Listen and Listening to Learn: Spoofed Audio Detection Through Linguistic Data Augmentation
- DOI:10.1109/isi58743.2023.10297267
- 发表时间:2023-10
- 期刊:
- 影响因子:0
- 作者:Zahra Khanjani;Lavon Davis;Anna Tuz;Kifekachukwu Nwosu;Christine Mallinson;V. P. Janeja
- 通讯作者:Zahra Khanjani;Lavon Davis;Anna Tuz;Kifekachukwu Nwosu;Christine Mallinson;V. P. Janeja
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vandana Janeja其他文献
Adopting Foundational Data Science Curriculum with Diverse Institutional Contexts
采用具有不同机构背景的基础数据科学课程
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Vandana Janeja;Maria Sanchez;Yi Xuan Khoo;Claudia Von Vacano;L. Chen - 通讯作者:
L. Chen
Understanding the Role of 2019 Amazon Wildfires on Antarctic Sea Ice Extent Using Data Science Approaches
使用数据科学方法了解 2019 年亚马逊野火对南极海冰范围的影响
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Sudip Chakraborty;Chhaya Kulkarni;Atefeh Jabeli;Akila Sampath;Gehan Boteju;Jianwu Wang;Vandana Janeja - 通讯作者:
Vandana Janeja
Vandana Janeja的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vandana Janeja', 18)}}的其他基金
Collaborative Research: SCIPE: Enhancing the Transdisciplinary Research Ecosystem for Earth and Environmental Science with Dedicated Cyber Infrastructure Professionals
合作研究:SCIPE:通过专门的网络基础设施专业人员增强地球与环境科学的跨学科研究生态系统
- 批准号:
2321009 - 财政年份:2023
- 资助金额:
$ 29.98万 - 项目类别:
Standard Grant
HDR Institute: HARP- Harnessing Data and Model Revolution in the Polar Regions
HDR 研究所:HARP——利用极地地区的数据和模型革命
- 批准号:
2118285 - 财政年份:2022
- 资助金额:
$ 29.98万 - 项目类别:
Cooperative Agreement
相似国自然基金
OH+HCl/DCl↔H2O/HOD+Cl态-态反应的全维微分截面研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
番茄抗病毒基因DCL2b受病毒诱导调控的分子机理
- 批准号:32272744
- 批准年份:2022
- 资助金额:54.00 万元
- 项目类别:面上项目
番茄抗病毒基因DCL2b受病毒诱导调控的分子机理
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
OH+HCl/DCl↔H2O/HOD+Cl态-态反应的全维微分截面研究
- 批准号:22273104
- 批准年份:2022
- 资助金额:54.00 万元
- 项目类别:面上项目
RNAi介导的转S1基因大豆对SMV广谱抗性启动机制的解析
- 批准号:31801388
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
EAGER: DCL: SaTC: Enabling Interdisciplinary Collaboration: Deplatforming and Online Hate Speech Across the Social Media Ecology
EAGER:DCL:SaTC:实现跨学科合作:社交媒体生态中的去平台化和在线仇恨言论
- 批准号:
2210023 - 财政年份:2022
- 资助金额:
$ 29.98万 - 项目类别:
Standard Grant
EAGER: DCL: SaTC: Enabling Interdisciplinary Collaboration: Using NLP to Identify Suspicious Transactions in Omnichannel Online C2C Marketplaces
EAGER:DCL:SaTC:实现跨学科协作:使用 NLP 识别全渠道在线 C2C 市场中的可疑交易
- 批准号:
2210091 - 财政年份:2022
- 资助金额:
$ 29.98万 - 项目类别:
Standard Grant
EAGER: DCL: SaTC: Enabling Interdisciplinary Collaboration: Efficient Human-in-the-Loop Redaction of Language Development Corpora
EAGER:DCL:SaTC:实现跨学科协作:语言开发语料库的高效人机交互编辑
- 批准号:
2210193 - 财政年份:2022
- 资助金额:
$ 29.98万 - 项目类别:
Standard Grant
EAGER: DCL: SaTC: Enabling Interdisciplinary Collaboration: Space Cybersecurity, Policy, and Risks
EAGER:DCL:SaTC:实现跨学科合作:空间网络安全、政策和风险
- 批准号:
2208458 - 财政年份:2022
- 资助金额:
$ 29.98万 - 项目类别:
Standard Grant
EAGER: DCL: SaTC: Enabling Interdisciplinary Collaboration: Adapting Economic Games to Personalize Privacy and Security Nudges
EAGER:DCL:SaTC:实现跨学科合作:调整经济游戏以个性化隐私和安全推动
- 批准号:
2209507 - 财政年份:2022
- 资助金额:
$ 29.98万 - 项目类别:
Standard Grant