BTT EAGER: Plant genome editing and engineering via novel nanotechnology-based systems

BTT EAGER:通过基于纳米技术的新型系统进行植物基因组编辑和工程

基本信息

  • 批准号:
    1844701
  • 负责人:
  • 金额:
    $ 29.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-03-01 至 2022-02-28
  • 项目状态:
    已结题

项目摘要

There is a national and global need to develop crop plants that yield greater food, feed, fiber and bioenergy related products. At the same time there is a need to develop crops with an increased tolerance to abiotic and biotic stress and reduced impacts on the environment. Genetic engineering and genome editing are important tools used for the study and improvement of crop plants. However, current genetic engineering/editing systems do not work efficiently, or in some cases at all in several crop species/varieties. The inability to genetically engineer certain species of plants, hinders the progress that can be made with related crops. This project is aimed at developing a new system to genetically engineer/edit plants using ultra-small, biodegradable, synthetic particles (nanoparticles). Development of such a system would enable more rapid advancement in crop genomics research and production of crops with enhanced traits and performance. In addition, the knowledge generated through this research may be utilized in the enhancement of other genome editing applications. Genome engineering/editing systems are critical tools for the advancement of plant functional genomics and epigenomics research, and for genomics-based crop improvement efforts. Major limitations in current plant genome engineering/editing systems - such as genotype dependence, low and variable efficiencies, and/or inability to accomplish integration-free, germline editing have significantly impeded efficient, widespread utilization of these technologies for crop genomics research and genetic improvement applications. To overcome these limitations, and to increase the efficiency and breadth of plant genome editing a nanoparticle-based systems for introducing bioengineering molecular machinery into target cells capable of regenerating germline edited plants is being developed. The specific aim of the research project is: to demonstrate nanoparticle-mediated delivery of Cas9/sgRNA ribonuleoprotein (RNP) complexes into target cells in a genotype-independent manner, and successful editing of target DNA sequences in plant cells/tissues, as well as regeneration of genome-edited plants. Novel, biodegradeable nanoparticle-based systems (nanocapsule and polyplex) are used to deliver RNPs into optimal plant cell/tissue targets to generate genome-edited plant cells and tissues from which germline edited plants can be recovered. Microscopic, visual and molecular assays will be conducted to determine genome editing success, location, frequency and inheritance. What is learned here can be applied not only to plant systems, but also in non-plant editing applications. Development of an efficient, genotype-independent nanoparticle-based plant gene editing system would have significant positive impact on genome engineering-based functional genomics research and crop improvement efforts.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
国家和全球都需要发展农作物,以生产更多的食物、饲料、纤维和生物能源相关产品。与此同时,有必要发展对非生物和生物胁迫的耐受性更强、对环境的影响更小的作物。基因工程和基因组编辑是研究和改良农作物的重要工具。然而,目前的基因工程/编辑系统并不有效,在某些情况下根本不适用于几个作物物种/品种。无法对某些种类的植物进行基因工程改造,阻碍了相关作物的研究进展。该项目旨在开发一种新的系统,使用超小的、可生物降解的合成颗粒(纳米颗粒)对植物进行基因工程/编辑。这种系统的开发将使作物基因组研究和作物生产得到更快的发展,提高作物的性状和性能。此外,通过这项研究产生的知识可能被用于增强其他基因组编辑应用程序。基因组工程/编辑系统是推进植物功能基因组学和表观基因组学研究以及以基因组学为基础的作物改良努力的关键工具。当前植物基因组工程/编辑系统的主要局限性--如对基因型的依赖性、低和可变的效率、和/或不能实现无整合的种系编辑--严重阻碍了这些技术在作物基因组学研究和遗传改良应用中的高效和广泛应用。为了克服这些限制,并提高植物基因组编辑的效率和广度,正在开发一种基于纳米颗粒的系统,用于将生物工程分子机制引入能够再生经过种系编辑的植物的靶细胞。该研究项目的具体目的是:展示纳米颗粒以非基因型方式将Cas9/sgRNA核糖核蛋白(RNP)复合体传递到靶细胞,成功编辑植物细胞/组织中的靶DNA序列,以及基因组编辑植物的再生。新型的、可生物降解的纳米颗粒系统(纳米胶囊和多聚体)被用于将RNPs运送到最佳的植物细胞/组织靶标中,以产生基因组编辑的植物细胞和组织,从中可以恢复经过种系编辑的植物。将进行显微、视觉和分子分析,以确定基因组编辑的成功率、位置、频率和遗传。这里所学的内容不仅可以应用于工厂系统,也可以应用于非工厂编辑应用程序。开发一种高效的、独立于基因型的纳米颗粒植物基因编辑系统将对基于基因组工程的功能基因组学研究和作物改良工作产生重要的积极影响。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Heidi Kaeppler其他文献

PlantGENE report on panel discussion: advancing plant biotechnology in Africa
  • DOI:
    10.1007/s11627-025-10514-8
  • 发表时间:
    2025-03-03
  • 期刊:
  • 影响因子:
    1.900
  • 作者:
    Aimee A. Malzahn;Nicole Songstad;Leena Tripathi;Ihuoma Okwuonu;Idah Sithole-Niang;Steven Runo;Henry Wagaba;Modeste Kouassi;Heidi Kaeppler;William Gordon-Kamm;Keunsub Lee;Wayne Parrott;Nigel Taylor;Christian Rogers;Jim Gaffney;Joyce Van Eck;Veena Veena
  • 通讯作者:
    Veena Veena

Heidi Kaeppler的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Heidi Kaeppler', 18)}}的其他基金

TRTech-PGR: Development of Highly-Efficient, Genotype-Independent Transformation Systems for Maize and Soybean Genome Research Communities
TRTech-PGR:为玉米和大豆基因组研究界开发高效、不依赖于基因型的转化系统
  • 批准号:
    1917138
  • 财政年份:
    2019
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant

相似海外基金

EAGER: Targeted and specific elimination of plant chromosomes
EAGER:有针对性地、特异性地消除植物染色体
  • 批准号:
    2310320
  • 财政年份:
    2023
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
EAGER: Leveraging Chaperones to Escape the Plant RuBisCO Catalytic Catch-22
EAGER:利用分子伴侣逃离植物 RubisCO 催化 Catch-22
  • 批准号:
    2244770
  • 财政年份:
    2023
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
EAGER: Enhancing plant immunity and growth with cell-penetrating peptides for organic agriculture
EAGER:利用有机农业的细胞穿透肽增强植物免疫力和生长
  • 批准号:
    2154863
  • 财政年份:
    2023
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
EAGER: Scaling Up Plant Demographic Rates with Imagery from Unoccupied Aerial Systems
EAGER:利用空闲航空系统的图像扩大植物人口统计率
  • 批准号:
    2207158
  • 财政年份:
    2022
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
EAGER: Plant pathogenic Streptomyces encode components for genetic code mistranslation
EAGER:植物致病性链霉菌编码遗传密码误译成分
  • 批准号:
    2304710
  • 财政年份:
    2022
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Continuing Grant
EAGER: Investigating plant thermomorphogenesis using innovative miniature devices
EAGER:使用创新的微型设备研究植物热形态发生
  • 批准号:
    2200200
  • 财政年份:
    2022
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
EAGER: Plant pathogenic Streptomyces encode components for genetic code mistranslation
EAGER:植物致病性链霉菌编码遗传密码误译成分
  • 批准号:
    2151063
  • 财政年份:
    2022
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Continuing Grant
EAGER: Artificial Intelligence (AI) to accelerate plant species discovery
EAGER:人工智能 (AI) 加速植物物种发现
  • 批准号:
    2054684
  • 财政年份:
    2021
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
EAGER: Methods for chromatin profiling of plant gametes and zygotes
EAGER:植物配子和受精卵染色质分析方法
  • 批准号:
    2139417
  • 财政年份:
    2021
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
EAGER: Multiscale multiplex spatial-omics: Illuminating molecular pathways and architecture in plant cells and tissues
EAGER:多尺度多重空间组学:阐明植物细胞和组织中的分子途径和结构
  • 批准号:
    2130365
  • 财政年份:
    2021
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了