TRTech-PGR: Development of Highly-Efficient, Genotype-Independent Transformation Systems for Maize and Soybean Genome Research Communities

TRTech-PGR:为玉米和大豆基因组研究界开发高效、不依赖于基因型的转化系统

基本信息

  • 批准号:
    1917138
  • 负责人:
  • 金额:
    $ 290万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

There is a strong national and global need to develop crop plants that yield greater food, feed, fiber and bioenergy related products, and that are more tolerant of abiotic and biotic stresses, while requiring less inputs and having reduced environmental impacts during production. One critical tool used for crop genome research and genetic improvement is genetic engineering. However, current genetic engineering systems don't work efficiently, or at all, for many important crop species or varieties within species, limiting the research and improvement progress that can be made with those crops. Research conducted on this project is aimed at 1) development and optimization of efficient genetic engineering systems that can be utilized across a wide array of varieties, 2) creation of enhanced, open-source crop engineering tools and biological materials for use in public crop genome research and genetic enhancement, and 3) education and training in plant transformation principles, practices and stewardship of transgenic/edited plants. As a part of these outreach efforts, team members will host an intensive workshop on transformation methods and protocols to disseminate the knowledge to other laboratories. Genetic engineering systems are critical tools for the advancement of crop functional genomics research and genomics-based crop improvement efforts both in the U.S. and worldwide. Current crop transformation systems are limited, however, by genotype specificity, high complexity and low efficiency of the processes, variable responses of target tissues, and an overall lack of capacity at the national level. To overcome the above limitations, research will be conducted to meet the following objectives: 1) develop efficient, high throughput, genotype-flexible meristem-based transformation systems for maize and soybean targeting easily isolated, pretreatable, storable explants; 2) improve the breadth and efficiency of Agrobacterium-based plant transformation systems via enhanced vector design, strain manipulation and enhanced public access; and 3) rapid and effective transfer of the knowledge and research outcomes from the project via publication, training and a workshop, and implementation of the improved protocols in public transformation research applications and services. Results from this research will lead to important advancement in understanding the plant transformation process and the role of specific biological, chemical and physical factors in dicot and monocot meristem-based plant transformation success and efficiency. New knowledge will also be generated regarding the function of individual and combined super-binary vector components and Agrobacterium strains on the plant transformation process. New knowledge, protocols, and biological/molecular materials developed through the research will be made widely available and contribute to development and deployment of enhanced crop transformation systems in the public sector, and training of the next generation of scientists in plant transformation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
国民和全球需求强烈,开发农作物植物,该植物产生更大的食物,饲料,纤维和生物能源相关的产品,并且对非生物和生物胁迫的耐受性更大,同时需要更少的投入和生产过程中的环境影响降低。用于作物基因组研究和遗传改善的一种关键工具是基因工程。但是,目前的基因工程系统无法有效地工作,或者根本无法对物种内的许多重要的农作物或品种起作用,从而限制了这些农作物可以取得的研究和改进进度。对该项目进行的研究的目的是1)开发和优化有效的基因工程系统,可以在各种品种中使用,2)创建增强的,开源的作物工程工具和生物学材料,用于公共作物基因组研究和遗传增强,以及3)工厂转化的教育和培训,实践,实践,实践,跨基因工厂和型工厂/培训工厂/培训。作为这些外展工作的一部分,团队成员将主持有关转型方法和协议的密集研讨会,以将知识传播给其他实验室。基因工程系统是在美国和全球范围内基于基因组学研究和基于基因组的作物改善工作的发展的关键工具。但是,当前的作物转化系统受到基因型特异性,过程的高复杂性和低效率的限制,目标组织的可变响应以及在国家一级的总体缺乏。为了克服上述局限性,将进行研究以满足以下目标:1)开发有效的,高吞吐量的基因型基于基因型的基于基因型分生组织的转化系统,用于玉米和大豆靶向易于隔离,可预处理,可储存的,可储存的探测器; 2)通过增强的矢量设计,应变操纵和增强公共通道,提高基于农杆菌的植物转化系统的广度和效率; 3)通过出版,培训和研讨会从项目中快速有效地转移知识和研究成果,并在公共转型研究应用程序和服务中实施改进的协议。这项研究的结果将导致在理解植物转化过程以及基于DICOT和MONOCOT分生组织的植物转化成功和效率中的特定生物学,化学和物理因素的作用方面的重要进步。还将在植物转化过程中有关个体和联合超级载体成分和农杆菌菌株的功能的新知识。通过研究开发的新知识,协议以及生物/分子材料将被广泛使用,并有助于公共部门增强和部署增强的作物转化系统,并培训下一代科学家在植物转型中的科学家。该奖项反映了NSF的法规任务,并认为通过基金会的知识优点和广泛的actitia criter scritia criter criter criter criter criter criter criter criter criter criter criter criter criteria criter criteria crietia criteria criteria crititia crietia crietia criteria均值得一提。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
New T-DNA binary vectors with NptII selection and RUBY reporter for efficient maize transformation and targeted mutagenesis
  • DOI:
    10.1093/plphys/kiad231
  • 发表时间:
    2023-05-08
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Lee, Keunsub;Kang, Minjeong;Wang, Kan
  • 通讯作者:
    Wang, Kan
Generating novel plant genetic variation via genome editing to escape the breeding lottery
Strategies for genotype-flexible plant transformation
  • DOI:
    10.1016/j.copbio.2022.102848
  • 发表时间:
    2022-12-01
  • 期刊:
  • 影响因子:
    7.7
  • 作者:
    Lee, Keunsub;Wang, Kan
  • 通讯作者:
    Wang, Kan
Maize transformation: history, progress, and perspectives
  • DOI:
    10.1007/s11032-021-01225-0
  • 发表时间:
    2021-06-01
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Kausch, Albert P.;Wang, Kan;Gordon-Kamm, William
  • 通讯作者:
    Gordon-Kamm, William
Agrobacterium-Mediated Immature Embryo Transformation of Recalcitrant Maize Inbred Lines Using Morphogenic Genes
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Heidi Kaeppler其他文献

Heidi Kaeppler的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Heidi Kaeppler', 18)}}的其他基金

BTT EAGER: Plant genome editing and engineering via novel nanotechnology-based systems
BTT EAGER:通过基于纳米技术的新型系统进行植物基因组编辑和工程
  • 批准号:
    1844701
  • 财政年份:
    2019
  • 资助金额:
    $ 290万
  • 项目类别:
    Continuing Grant

相似国自然基金

通过构建Pgr-Cas9工具小鼠研究Hippo通路效应因子Yap1/Wwtr1在蜕膜化过程中的作用
  • 批准号:
    32370913
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
海洋硅藻PGR5/PGRL1蛋白感知和适应波动光的作用机制研究
  • 批准号:
    42276146
  • 批准年份:
    2022
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目
KLF12通过调控PGR和GDF10的表达抑制孕激素诱导子宫内膜癌细胞分化的机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
HBP1调节PGR转录活性在胚胎植入及妊娠维持中的作用机制
  • 批准号:
    82160296
  • 批准年份:
    2021
  • 资助金额:
    34.00 万元
  • 项目类别:
    地区科学基金项目
KLF12通过调控PGR和GDF10的表达抑制孕激素诱导子宫内膜癌细胞分化的机制研究
  • 批准号:
    82172819
  • 批准年份:
    2021
  • 资助金额:
    55.00 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: RESEARCH-PGR: Development of epigenetic editing for crop improvement
合作研究:RESEARCH-PGR:用于作物改良的表观遗传编辑的开发
  • 批准号:
    2331437
  • 财政年份:
    2024
  • 资助金额:
    $ 290万
  • 项目类别:
    Standard Grant
Collaborative Research: RESEARCH-PGR: Development of epigenetic editing for crop improvement
合作研究:RESEARCH-PGR:用于作物改良的表观遗传编辑的开发
  • 批准号:
    2331438
  • 财政年份:
    2024
  • 资助金额:
    $ 290万
  • 项目类别:
    Standard Grant
TRTech-PGR: Development of highly efficient and unconstrained CRISPR systems for plant functional genomics
TRTech-PGR:开发用于植物功能基因组学的高效且无约束的 CRISPR 系统
  • 批准号:
    2132693
  • 财政年份:
    2022
  • 资助金额:
    $ 290万
  • 项目类别:
    Standard Grant
TRTech-PGR: Spatiotemporal Mapping of Protein Life in Plant Cell Signaling, Trafficking, and Development with the Next-Generation Tandem Fluorescent Timers
TRTech-PGR:使用下一代串联荧光计时器绘制植物细胞信号传导、运输和发育中蛋白质生命的时空图谱
  • 批准号:
    2049642
  • 财政年份:
    2021
  • 资助金额:
    $ 290万
  • 项目类别:
    Continuing Grant
RESEARCH-PGR: Investigating how internal and external cues coordinate floral organ development and the consequences for plant reproduction
研究-PGR:研究内部和外部线索如何协调花器官发育以及对植物繁殖的影响
  • 批准号:
    1759942
  • 财政年份:
    2018
  • 资助金额:
    $ 290万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了