CAREER: Rational Design of Phase-Changing Nanomaterials for Spatiotemporal Protein Delivery
职业:用于时空蛋白质递送的相变纳米材料的合理设计
基本信息
- 批准号:1845053
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Non-Technical AbstractThis project will develop ultrasound-sensitive nanomaterials that can be acoustically activated to deliver otherwise-impermeable biomolecules into cells with high precision. This is achieved through the rational design of fluorous phase-changing nanoparticles (PCNs), which undergo liquid-gas phase transitions in response to acoustic stimuli. While PCNs have enjoyed success as ultrasound imaging agents, their translation into drug delivery devices has been impeded by poor cargo loading and variable biologic outcomes. Building upon prior seminal work, this project will open new opportunities in the rational design of PCNs by understanding the interdependence of particle composition and tissue mechanics on their acoustic activation, and optimize the loading and delivery of biologic cargo. These objectives will be accomplished through three aims: (1) Prepare bio-inspired PCNs and identify how physical and chemical properties impacts their ultrasound activation; (2) Demonstrate successful dispersion of proteins into the liquid interior of fluorous PCNs and assess delivery under ultrasound; (3) Pair biophysical cell-based experiments with computational models of membrane mechanics to advance a more comprehensive mechanism for PCN-mediated cell permeabilization. Success of this work will enable the design of PCNs with well controlled acoustic biophysics, yielding new biochemical tools that can be used to probe and manipulate cells within complex tissue microenvironments with high precision. Research findings from this project will be integrated with outreach activities to incorporate principles of biomaterial design and biophysics into K-12 education. Educational objectives include: (1) Examine the effect of integrating high-school students with undergraduate engineering design teams on recruitment and persistence in STEM education; and (2) Develop and implement an Ultrasound Olympics program that will provide transformative hands-on experiences to K-12 students in nanotechnology and bioacoustics. Leveraging an integrated research and outreach program, supported through rigorous and routine assessment, this project will advance new bio-nanotechnologies and improve student retention in emerging STEM fields. Technical AbstractThe goal of this CAREER award is to develop a framework for the rational design of fluorous phase-changing nanoparticles (PCNs) that can be vaporized by ultrasound to afford transmembrane delivery of biomolecules into cells with spatial and temporal precision. Although PCNs have enjoyed success as ultrasound contrast agents, their translation into clinically useful delivery vehicles has yet to be realized. This is a consequence of two key gaps in knowledge that include: (1) a lack of well-defined structure-activity relationships defining how PCN physicochemical properties regulate their phase-changing behavior; and (2) an incomplete mechanistic understanding of how local tissue mechanics impacts PCN biophysics. Using template-driven peptide assembly, this project will prepare programmable PCNs to elucidate the influence of particle surface tension and size on their acoustic activation, as well as identify conditions that allow protein cargo to be loaded into, and delivered from, the fluorous liquid particle core. In parallel, this project will identify how particle-cell-matrix interactions work in concert to control the biophysics of PCNs at the cell surface during vaporization. To engage and train a new generation of diverse scientists in emerging biotechnologies, such as those explored here, this project will develop and implement an outreach program to integrate underrepresented K-12 students in STEM research. Activities will include incorporating underserved high-school students into undergraduate engineering design teams, and the creation of an Ultrasound Olympics workshop to engage grade 6-12 teachers and integrate bioengineering and acoustics concepts into the classroom. By linking the proposed research program with outreach activities, this project will contribute to the development of a competitive STEM workforce capable of tackling diverse challenges in biomaterials design, molecular biophysics and bioimaging.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要本项目将开发超声敏感的纳米材料,可以被声学激活,以高精度将其他不可渗透的生物分子输送到细胞中。这是通过合理设计的氟相变纳米粒子(PCN),它经历液-气相变响应声刺激。虽然多氯化萘作为超声成像剂取得了成功,但其转化为药物输送装置受到货物装载不良和生物学结果多变的阻碍。在先前开创性工作的基础上,该项目将通过了解颗粒组成和组织力学对其声学激活的相互依赖性,为多氯化萘的合理设计开辟新的机会,并优化生物货物的装载和交付。这些目标将通过三个目标来实现:(1)制备生物启发的多氯化萘并确定物理和化学性质如何影响其超声激活;(2)证明蛋白质成功分散到氟多氯化萘的液体内部并评估超声下的递送;(3)将基于生物物理细胞的实验与膜力学的计算模型配对,以推进更全面的PCN机制。介导的细胞透化。 这项工作的成功将使PCNs的设计与良好控制的声学生物物理学,产生新的生化工具,可用于探测和操纵复杂的组织微环境中的细胞具有高精度。该项目的研究结果将与推广活动相结合,将生物材料设计和生物物理学的原则纳入K-12教育。教育目标包括:(1)检查将高中生与本科工程设计团队整合在STEM教育中的招聘和坚持的效果;(2)开发和实施超声奥运会计划,为K-12学生提供变革性的实践经验纳米技术和生物声学。利用综合研究和推广计划,通过严格和常规评估的支持,该项目将推进新的生物纳米技术,并提高新兴STEM领域的学生保留率。 技术摘要该职业奖的目标是开发一个合理设计氟相变纳米颗粒(PCNs)的框架,这些纳米颗粒可以通过超声蒸发,以空间和时间精确度将生物分子跨膜递送到细胞中。虽然多氯化萘作为超声造影剂已经取得了成功,但它们转化为临床上有用的运载工具还有待实现。这是两个关键知识差距的结果,包括:(1)缺乏定义明确的结构-活性关系,定义PCN物理化学性质如何调节其相变行为;(2)对局部组织力学如何影响PCN生物物理学的机械理解不完整。使用模板驱动的肽组装,该项目将制备可编程的PCN,以阐明颗粒表面张力和大小对其声学激活的影响,以及确定允许蛋白质货物装载到含氟液体颗粒核心中并从其中递送的条件。同时,该项目将确定颗粒-细胞-基质相互作用如何协同工作,以控制汽化过程中细胞表面多氯化萘的生物物理学。为了在新兴的生物技术领域培养和培养新一代的多元化科学家,例如这里所探讨的那些科学家,该项目将制定和实施一项推广计划,将代表性不足的K-12学生纳入STEM研究。活动将包括将服务不足的高中学生纳入本科工程设计团队,并创建一个超声奥运会研讨会,让6-12年级的教师参与,并将生物工程和声学概念融入课堂。通过将拟议的研究计划与外展活动联系起来,该项目将有助于培养一支有竞争力的STEM人才队伍,能够应对生物材料设计、分子生物物理学和生物成像方面的各种挑战。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mechanomorphogenic Films Formed via Interfacial Assembly of Fluorinated Amino Acids
- DOI:10.1002/adfm.202104223
- 发表时间:2021-06
- 期刊:
- 影响因子:19
- 作者:Janna N. Sloand;Tyler E. Culp;Nichole Wonderling;E. Gomez;Scott H. Medina
- 通讯作者:Janna N. Sloand;Tyler E. Culp;Nichole Wonderling;E. Gomez;Scott H. Medina
Ultrasound‐Responsive Nanopeptisomes Enable Synchronous Spatial Imaging and Inhibition of Clot Growth in Deep Vein Thrombosis
超声响应纳米肽体可实现同步空间成像并抑制深静脉血栓形成中的凝块生长
- DOI:10.1002/adhm.202100520
- 发表时间:2021
- 期刊:
- 影响因子:10
- 作者:Sloand, Janna N.;Rokni, Eric;Watson, Connor T.;Miller, Michael A.;Manning, Keefe B.;Simon, Julianna C.;Medina, Scott H.
- 通讯作者:Medina, Scott H.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Scott Medina其他文献
Scott Medina的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Scott Medina', 18)}}的其他基金
Probing Microbe-Material Interactions towards In situ Gut Microbiome Engineering
探索微生物与材料的相互作用以实现原位肠道微生物组工程
- 批准号:
2104281 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
相似国自然基金
基于Rational Krylov法和小波域稀疏约束的时间域海洋电磁三维正反演研究
- 批准号:41804098
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于Rational-Tensor(RTCam)摄像机模型的序列图像间几何框架研究
- 批准号:61072105
- 批准年份:2010
- 资助金额:29.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Rational Design of Dual-Functional Photocatalysts for Synthetic Reactions: Controlling Photosensitization and Reaction with a Single Nanocrystal
职业:用于合成反应的双功能光催化剂的合理设计:用单个纳米晶体控制光敏化和反应
- 批准号:
2339866 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Rational Design of One-Dimensional Contacts to Two-Dimensional Atomically Thin Heterostructure for High-Performance and Low Noise Field Effect Transistors and Biosensors
职业:一维接触到二维原子薄异质结构的合理设计,用于高性能和低噪声场效应晶体管和生物传感器
- 批准号:
2145962 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Rational Design of Ferroelectric Semiconductors
职业:铁电半导体的合理设计
- 批准号:
2145797 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Towards rational design and control of oxygen migration in oxide thin films for nano-ionic technologies
职业:针对纳米离子技术的氧化物薄膜中氧迁移的合理设计和控制
- 批准号:
2144383 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Rational Design of Nanoporous Catalysts for Carbonylation Reactions
职业:羰基化反应纳米多孔催化剂的合理设计
- 批准号:
2144360 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Rational Design of Immune Cell-Homing Biomaterials for Immune Regulation
职业:用于免疫调节的免疫细胞归巢生物材料的合理设计
- 批准号:
2143673 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Rational design of non-heme iron halogenases
职业:非血红素铁卤化酶的合理设计
- 批准号:
2046527 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Rational Design of Defect-Ordered Architectures in Oxygen-Deficient Perovskites to Control the Oxygen-Evolution Activity
职业:合理设计缺氧钙钛矿中的缺陷有序结构以控制析氧活性
- 批准号:
1943085 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Toward Rational Discovery and Design of Metastable Materials
职业:亚稳态材料的合理发现和设计
- 批准号:
1945010 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Computation-Enabled Rational Design of Cytochrome P450 for Ionic Liquid Biodegradation
职业:用于离子液体生物降解的细胞色素 P450 的计算合理设计
- 批准号:
1845143 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant