Understanding and exploiting a nitrogen-fixing endophyte for enhancing sustainability and productivity of vertical farming

了解和利用固氮内生菌来提高垂直农业的可持续性和生产力

基本信息

  • 批准号:
    BB/Z514354/1
  • 负责人:
  • 金额:
    $ 62.7万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

The UK imports 40% of its fruit and vegetables with these supply chains subject to disruption through weather in production areas and geopolitical issues, with shortages of produce becoming more common in the UK. Increasing UK production in a sustainable manner is critical to provide resilience to UK fruit and vegetable supply. Vertical farming is a rapidly-growing sector offering reliable year-round production for increased productivity, production on non-agricultural land with minimal chemical inputs (fertilizer/pesticides), no run-off pollution and highly-efficient water use. The controlled conditions of vertical farming maximise growth (minimising time-to-harvest) and prevent waste (from unfavourable climate). However, a key challenge to UK production of PACE horticulture edibles is the high energy cost and associated GHG emissions. Significant increases in the yield of these crops and/or reduction in days-to-harvest, without increasing the environmental burden of production, is the only solution to ensure a stable and sustainable supply. Our project is aimed at increasing resource use efficiency - enhancing productivity whilst reducing costs and GHG emissions per kg of produce.Availability of nitrogen is a limiting factor for crop yield, but fertilizer use contributes significantly to GHG emissions, even in controlled environment agriculture. Here, we investigate an endophytic bacterium that is able to fix nitrogen from the air and exploit this endophyte to enhance resource use efficiency of vertical farming. Gluconacetobacter diazotrophicus was first identified from sugarcane and able to colonise many different crops. It stimulates plant growth via two main mechanisms; nitrogen fixation that provides ammonia to plant cells; and secretion of phytohormones and small molecules that induce changes in root system architecture, resulting in enhanced nutrient use efficiency. It is clear that in sugarcane G. diazotrophicus can provide a significant proportion of the nitrogen required by the plant and G. diazotrophicus treatment can increase potato yield by up to 30% in the field. However, we know that different varieties of crops vary in G. diazotrophicus colonisation and growth response, and the impact of G. diazotrophicus colonization has not been tested in vertical farming systems.Lettuce is the most valuable leafy vegetable grown in the UK and an increasing proportion of production is via controlled environment agriculture. In this project we will use quantitative genetics and transcriptome profiling of a lettuce diversity set to identify genetic loci and candidate mechanisms determining lettuce colonisation and/or response to G. diazotrophicus. We will investigate the impact of G. diazotrophicus on yield/days to harvest, the contribution of endophyte nitrogen-fixation to lettuce nitrogen content and the relative importance of nitrogen fixation versus root system changes. We will quantify the effects of G. diazotrophicus colonization on lettuce when grown in a commercial-scale vertical farming system and determine the impacts of G. diazotrophicus on GHG emissions and economics of lettuce production in a vertical farm.Our proposal addresses three of the PACE challenge areas (Genetic improvement of crops for increased yield, Reducing environmental impacts and progressing towards sustainability targets, and Sustainably increasing yield, quality and productivity by designing better systems). Project outcomes will sustainably enhance lettuce production in vertical farming systems with environmental and economic benefits across the lettuce CEA supply chain. Outcomes will drive breeding and/or selecting lettuce varieties for enhanced resource use efficiency via G. diazotrophicus colonisation; optimised growing recipes and technology for Vertical Future clients; and new markets for Azotic products.
英国进口40%的水果和蔬菜,这些供应链受到生产区天气和地缘政治问题的影响,农产品短缺在英国变得越来越普遍。以可持续的方式增加英国的产量对于提供英国水果和蔬菜供应的弹性至关重要。垂直农业是一个快速发展的行业,提供可靠的全年生产,提高生产力,在非农业土地上生产,化学投入(化肥/农药)最少,没有径流污染,用水效率高。垂直农业的控制条件最大限度地提高了生长(最大限度地减少了收获时间)并防止了浪费(不利的气候)。然而,英国生产PACE园艺食品的一个关键挑战是高能源成本和相关的温室气体排放。在不增加生产环境负担的情况下,大幅提高这些作物的产量和/或缩短收获时间,是确保稳定和可持续供应的唯一解决办法。我们的项目旨在提高资源利用效率,提高生产力,同时降低成本和每公斤农产品的温室气体排放量。氮的可用性是作物产量的一个限制因素,但肥料的使用对温室气体排放有显著贡献,即使在受控环境的农业中也是如此。在这里,我们研究了一种能够从空气中固定氮的内生细菌,并利用这种内生细菌来提高垂直农业的资源利用效率。重氮养糖醋杆菌最早是在甘蔗中发现的,它能够在许多不同的作物中定植。它通过两个主要机制刺激植物生长;为植物细胞提供氨的固氮作用;以及诱导根系结构变化的植物激素和小分子的分泌,从而提高养分利用效率。很明显,在甘蔗中,重氮营养菌可以提供植株所需氮的很大一部分,重氮营养菌处理可以使马铃薯增产高达30%。然而,我们知道不同品种的作物对重氮营养菌的定殖和生长反应不同,重氮营养菌定殖的影响尚未在垂直农业系统中进行过测试。生菜是英国种植的最有价值的叶菜,通过控制环境农业生产的比例越来越大。在这个项目中,我们将使用生菜多样性的定量遗传学和转录组分析来确定决定生菜定殖和/或对重氮营养菌的反应的遗传位点和候选机制。研究重氮营养菌对产量/收获天数的影响、内生固氮对生菜含氮量的贡献以及固氮对根系变化的相对重要性。我们将量化重氮营养菌定殖对生菜在商业规模垂直种植系统中的影响,并确定重氮营养菌对垂直农场生菜生产的温室气体排放和经济效益的影响。我们的提案涉及PACE的三个挑战领域(作物的遗传改良以提高产量,减少环境影响并朝着可持续目标迈进,以及通过设计更好的系统可持续地提高产量、质量和生产力)。项目成果将可持续地提高垂直农业系统的生菜产量,并在整个生菜CEA供应链中带来环境和经济效益。结果将推动育种和/或选择生菜品种,通过重氮营养菌定殖提高资源利用效率;为垂直未来客户优化种植配方和技术;以及无氮产品的新市场。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Katherine Denby其他文献

Scoping Potential Routes to UK Civil Unrest via the Food System: Results of a Structured Expert Elicitation
通过食品系统确定英国内乱的潜在途径:结构化专家启发的结果
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Aled Jones;S. Bridle;Katherine Denby;R. Bhunnoo;Daniel Morton;Lucy Stanbrough;Barnaby Coupe;Vanessa Pilley;Tim Benton;P. Falloon;Tom K. Matthews;S. Hasnain;John S. Heslop;S. Beard;Julie Pierce;Jules Pretty;Monika Zurek;Alexandra M. Johnstone;Peter Smith;Neil Gunn;Molly Watson;Edward Pope;A. Tzachor;Caitlin Douglas;C. Reynolds;Neil Ward;Jez Fredenburgh;C. Pettinger;Tom Quested;J. P. Cordero;Clive Mitchell;Carrie Bewick;Cameron Brown;Christopher Brown;Paul J. Burgess;Andy Challinor;Andrew Cottrell;Tom Crocker;Thomas George;Charles J. Godfray;Rosie S. Hails;John Ingram;Tim Lang;Fergus Lyon;Simon Lusher;Tom Macmillan;Sue Newton;Simon Pearson;Sue Pritchard;Dale Sanders;Angelina Sanderson Bellamy;Megan Steven;A. Trickett;Andrew Voysey;Christine A Watson;Darren Whitby;Kerry Whiteside
  • 通讯作者:
    Kerry Whiteside
Transformative Action Towards Regenerative Food Systems: a Large-scale Case Study
面向再生食品系统的变革行动:大规模案例研究
  • DOI:
    10.2139/ssrn.4718690
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Buckton;I. Fazey;Esther Carmen;Ian Kendrick;Peter Ball;Maria Bryant;Annie Connolly;Katherine Denby;Bob Doherty;Anthonia James;Belinda Morris;Sophie Stewart;S. Bridle;M. Cain;Nicola Nixon;Eugyen Suzanne Om;Bill Sharpe;Maddie Sinclair;Christopher Yap;Dave Arnott;A. Frankowska;Tim Frenneux;Henk Geertsema;Dave Gledhill;A. Kluczkovski;Rebecca Lait;Rebecca Newman;Kate E. Pickett
  • 通讯作者:
    Kate E. Pickett

Katherine Denby的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Katherine Denby', 18)}}的其他基金

New Enzymatic Virulence Factors In Phytophthora Infestans
马铃薯晚疫病菌中新的酶促毒力因子
  • 批准号:
    BB/V000365/1
  • 财政年份:
    2021
  • 资助金额:
    $ 62.7万
  • 项目类别:
    Research Grant
Targeting Plant Pathogens Through LPMO Gene Silencing
通过 LPMO 基因沉默靶向植物病原体
  • 批准号:
    BB/S018735/1
  • 财政年份:
    2019
  • 资助金额:
    $ 62.7万
  • 项目类别:
    Research Grant
Harnessing the benefits of African leafy vegetables for smallholder farmers and their households
利用非洲叶类蔬菜为小农及其家庭带来的好处
  • 批准号:
    BB/R020345/1
  • 财政年份:
    2018
  • 资助金额:
    $ 62.7万
  • 项目类别:
    Research Grant
Dynamic re-programming of the cold transcriptome in Arabidopsis
拟南芥冷转录组的动态重编程
  • 批准号:
    BB/P00671X/1
  • 财政年份:
    2017
  • 资助金额:
    $ 62.7万
  • 项目类别:
    Research Grant
COpenPlantOmics (COPO): a Collaborative Bioinformatics Plant Science Platform
COpenPlantOmics (COPO):协作生物信息学植物科学平台
  • 批准号:
    BB/L021390/2
  • 财政年份:
    2016
  • 资助金额:
    $ 62.7万
  • 项目类别:
    Research Grant
A Systems Approach to Disease Resistance Against Necrotrophic Fungal Pathogens
针对坏死性真菌病原体的抗病系统方法
  • 批准号:
    BB/M017877/2
  • 财政年份:
    2016
  • 资助金额:
    $ 62.7万
  • 项目类别:
    Research Grant
The contribution of pathogen effectors to host range and non-host resistance
病原体效应子对宿主范围和非宿主抗性的贡献
  • 批准号:
    BB/K018612/2
  • 财政年份:
    2016
  • 资助金额:
    $ 62.7万
  • 项目类别:
    Research Grant
Data Standards for the Plant Sciences
植物科学数据标准
  • 批准号:
    BB/N020022/1
  • 财政年份:
    2016
  • 资助金额:
    $ 62.7万
  • 项目类别:
    Research Grant
A Systems Approach to Disease Resistance Against Necrotrophic Fungal Pathogens
针对坏死性真菌病原体的抗病系统方法
  • 批准号:
    BB/M017877/1
  • 财政年份:
    2015
  • 资助金额:
    $ 62.7万
  • 项目类别:
    Research Grant
COpenPlantOmics (COPO): a Collaborative Bioinformatics Plant Science Platform
COpenPlantOmics (COPO):协作生物信息学植物科学平台
  • 批准号:
    BB/L021390/1
  • 财政年份:
    2014
  • 资助金额:
    $ 62.7万
  • 项目类别:
    Research Grant

相似海外基金

Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    $ 62.7万
  • 项目类别:
    Studentship
Exploiting DNS in 3D Design
在 3D 设计中利用 DNS
  • 批准号:
    2777188
  • 财政年份:
    2026
  • 资助金额:
    $ 62.7万
  • 项目类别:
    Studentship
PriorCircuit:Circuit mechanisms for computing and exploiting statistical structures in sensory decision making
PriorCircuit:在感官决策中计算和利用统计结构的电路机制
  • 批准号:
    EP/Z000599/1
  • 财政年份:
    2024
  • 资助金额:
    $ 62.7万
  • 项目类别:
    Research Grant
New directions in piezoelectric phononic integrated circuits: exploiting field confinement (SOUNDMASTER)
压电声子集成电路的新方向:利用场限制(SOUNDMASTER)
  • 批准号:
    EP/Z000688/1
  • 财政年份:
    2024
  • 资助金额:
    $ 62.7万
  • 项目类别:
    Research Grant
Exploiting JWST to Unveil Our Icy Universe
利用 JWST 揭示我们的冰冷宇宙
  • 批准号:
    2906887
  • 财政年份:
    2024
  • 资助金额:
    $ 62.7万
  • 项目类别:
    Studentship
Exploiting protein import to interrogate energy transduction through the bacterial cell envelope
利用蛋白质输入来询问通过细菌细胞包膜的能量转导
  • 批准号:
    BB/X016366/1
  • 财政年份:
    2024
  • 资助金额:
    $ 62.7万
  • 项目类别:
    Research Grant
Exploiting Controlled Environments for the Development of Optimised Cannabis Sativa Phenotypes for Pharmaceutical Applications - CE-CannPharm
利用受控环境开发用于制药应用的优化大麻表型 - CE-CannPharm
  • 批准号:
    BB/Z514470/1
  • 财政年份:
    2024
  • 资助金额:
    $ 62.7万
  • 项目类别:
    Research Grant
CAREER: Solving Estimation Problems of Networked Interacting Dynamical Systems Via Exploiting Low Dimensional Structures: Mathematical Foundations, Algorithms and Applications
职业:通过利用低维结构解决网络交互动力系统的估计问题:数学基础、算法和应用
  • 批准号:
    2340631
  • 财政年份:
    2024
  • 资助金额:
    $ 62.7万
  • 项目类别:
    Continuing Grant
CAREER: Structure Exploiting Multi-Agent Reinforcement Learning for Large Scale Networked Systems: Locality and Beyond
职业:为大规模网络系统利用多智能体强化学习的结构:局部性及其他
  • 批准号:
    2339112
  • 财政年份:
    2024
  • 资助金额:
    $ 62.7万
  • 项目类别:
    Continuing Grant
ActBio: Exploiting the Parallels between Active Matter and Mechanobiology
ActBio:利用活性物质与机械生物学之间的相似之处
  • 批准号:
    EP/Y033981/1
  • 财政年份:
    2024
  • 资助金额:
    $ 62.7万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了