Fast, Accurate, Compact, Trustable, low Cost and Power (FACTCoP) sub-THz/THz Dielectric Sensor for Ubiquitous Access

快速、准确、紧凑、可靠、低成本和低功耗 (FACTCoP) 亚太赫兹/太赫兹介电传感器,实现无处不在的接入

基本信息

  • 批准号:
    2241337
  • 负责人:
  • 金额:
    $ 39.85万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-15 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

Dielectric constant or permittivity is an important property of materials and biological cells. The ubiquitous and fast sensing of them not only will help us better understand ourselves and surrounding environments, but can also help prevent devastating events in society, such as global pandemics, by timely detection. Ubiquitous dielectric sensing requires not only high performances such as accurate, robust, and trustworthy results, but also fast response, small form factor, low cost, low power consumption, etc., for sensors to be widely deployed in different scenarios and applications. Existing optical and electronic dielectric sensing techniques face great challenges to meet all the requirements. Therefore, this project aims to bridge the critical gap between optical sensing and electronic sensing and develop ubiquitous dielectric sensors meeting all the above requirements for daily usage. The research results of the proposed project are expected to not only directly advance ubiquitous dielectric sensing for human daily lives, but also impact the societies at large. The successfully demonstrated sub-THz/THz design techniques proposed in this project will advance knowledge and facilitate exploration of this underutilized spectrum. In the educational front, the principal investigator (PI) will broadly disseminate the research results through presentations and publications in scientific conferences and journals, as well as integrate research with education and outreach programs. The PI is committed to engaging and retaining students from underrepresented groups in engineering and STEM fields and attracting minority and female students through various local programs. The PI will continue her conscientious outreach efforts to local high schools to inspire K-12 students, especially minorities and socioeconomically disadvantaged students, to join the engineering world.To materialize the overarching goal of ubiquitous access to dielectric sensors for daily lives, the proposed research will investigate fast, accurate, compact, trustable, low cost and power (FACTCoP) sub-THz/THz ring-resonator-based dielectric sensors to leverage the benefits of both high-performance optical micro-ring resonator sensors and unparalleled on-chip signal processing with THz speed from advanced semiconductor devices and circuits. It integrates three coherent major tasks enabled by new design ideas and schemes. The first task is to boost sensitivity by intensifying evanescent electromagnetic fields for enhanced wave-matter interactions through multi-dimensional sub-THz/THz slot rings and waveguides and using phase-based sensing modality. The second task is to develop a holistic noise suppression scheme to significantly reduce various noise sources, including transmitter signal phase noise, receiver flicker noise, common-mode noise, ambient noise coupling, as well as broadband thermal noise. The systematic noise suppression scheme is to improve minimum detectable signal for enhanced sensor resolution. The third task is to develop low-power, low-noise integrated signal generator in transmitter and signal detection and processing in receiver by exploring new innovative design ideas and techniques for sub-THz/THz integrated circuits and systems, such as a sub-THz/THz sub-sampling phase-locked loop on the transmitter side, multi-path noise cancellation on the receiver side. In addition to the sensor design and development, the PI and her team will also address the following key questions in their research: 1) what are the ultimate noise constraints for sub-THz/THz circuits in different noise domains? 2) with the proposed noise suppression scheme, what is the theoretically achievable sensing resolution? 3) under real system hardware implementation constraints, such as mismatches and parasitics in circuits and components, what are the practically achievable sensing resolutions?This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
介电常数或电容率是材料和生物细胞的重要性质。对它们的无处不在和快速感知不仅有助于我们更好地了解自己和周围环境,而且还可以通过及时检测来帮助预防社会中的破坏性事件,例如全球流行病。普遍存在的介电感测不仅需要高性能,例如准确、鲁棒和可信的结果,而且需要快速响应、小形状因子、低成本、低功耗等。使传感器能够广泛部署在不同的场景和应用中。现有的光学和电子介电传感技术面临着巨大的挑战,以满足所有的要求。因此,本项目旨在弥合光学传感和电子传感之间的关键差距,并开发满足上述日常使用要求的无处不在的电介质传感器。预计该项目的研究成果不仅将直接推动人类日常生活中无处不在的介电传感,而且还将影响整个社会。在这个项目中提出的成功演示的亚太赫兹/太赫兹设计技术将推进知识和促进探索这一未充分利用的频谱。在教育方面,主要研究者(PI)将通过在科学会议和期刊上的演讲和出版物广泛传播研究成果,并将研究与教育和推广计划相结合。PI致力于吸引和留住来自工程和STEM领域代表性不足的群体的学生,并通过各种当地计划吸引少数民族和女性学生。PI将继续她认真的外展工作,以当地的高中,鼓励K-12学生,特别是少数民族和社会经济弱势学生,加入工程世界。为了实现日常生活中无处不在的介电传感器的总体目标,拟议的研究将调查快速,准确,紧凑,可靠,基于低成本和低功耗(FACTCoP)亚太赫兹/太赫兹环形谐振器的介电传感器,利用高性能光学微环形谐振器传感器和先进半导体器件和电路无与伦比的太赫兹速度片上信号处理的优势。它集成了三个连贯的主要任务,通过新的设计理念和方案实现。第一个任务是通过增强倏逝电磁场来提高灵敏度,以通过多维亚THz/THz槽环和波导以及使用基于相位的传感模态来增强波-物质相互作用。第二个任务是开发一个整体的噪声抑制方案,以显着降低各种噪声源,包括发射机信号相位噪声,接收机闪烁噪声,共模噪声,环境噪声耦合,以及宽带热噪声。系统的噪声抑制方案是为了提高传感器的分辨率,以提高最小可检测信号。第三个任务是通过探索新的亚太赫兹/太赫兹集成电路和系统的创新设计思想和技术,如发射端的亚太赫兹/太赫兹亚采样锁相环、接收端的多径噪声抵消等,研制发射端的低功耗、低噪声集成信号发生器和接收端的信号检测与处理。除了传感器的设计和开发,PI和她的团队还将在他们的研究中解决以下关键问题:1)在不同的噪声域中,sub-THz/THz电路的最终噪声约束是什么?2)采用所提出的噪声抑制方案,理论上可实现的感测分辨率是多少?3)在真实的系统硬件实现约束(例如电路和组件中的失配和寄生效应)下,实际可实现的感测分辨率是多少?该奖项反映了NSF的法定使命,并被认为是值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Qun Jane Gu其他文献

Power detectors for integrated microwave/mm-wave imaging systems in mainstream silicon technologies
  • DOI:
    10.1016/j.sse.2016.01.008
  • 发表时间:
    2016-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Qun Jane Gu;James C. Li;Adrian Tang
  • 通讯作者:
    Adrian Tang
Ultralow Power E-Band Low-Noise Amplifier With Three-Stacked Current-Sharing Amplification Stages in 28-nm CMOS
具有 28 nm CMOS 封装三堆叠均流放大级的超低功耗 E 频段低噪声放大器
  • DOI:
    10.1109/lmwc.2022.3161998
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Liang Qiu;Jiabing Liu;Qianyi Dong;Zhihao Lv;Kailong Zhao;Shengjie Wang;Yen-Cheng Kuan;Qun Jane Gu;Xiaopeng Yu;Chunyi Song;Zhiwei Xu
  • 通讯作者:
    Zhiwei Xu
A 6.5–12-GHz Balanced Variable-Gain Low-Noise Amplifier With Frequency-Selective Gain Equalization Technique
采用频率选择性增益均衡技术的 6.5 × 12 GHz 平衡可变增益低噪声放大器
  • DOI:
    10.1109/tmtt.2020.3038470
  • 发表时间:
    2021-01
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Huiyan Gao;Nayu Li;Min Li;Shaogang Wang;Zijiang Zhang;Chunyi Song;Yen-Cheng Kuan;Xiaopeng Yu;Qun Jane Gu;Zhiwei Xu
  • 通讯作者:
    Zhiwei Xu
An 800-ps Origami True-Time-Delay-Based CMOS Receiver Front End for 6.5-9 GHz Phased Arrays
适用于 6.5-9 GHz 相控阵的 800 ps Origami 基于实时延迟的 CMOS 接收器前端
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Min Li;Nayu Li;Huiyan Gao;Zijiang Zhang;Shaogang Wang;Chunyi Song;Yen-Cheng Kuan;Xiaopeng Yu;Qun Jane Gu;Zhiwei Xu
  • 通讯作者:
    Zhiwei Xu
Integrated D-band transmitter and receiver for wireless data communication in 65 nm CMOS

Qun Jane Gu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Qun Jane Gu', 18)}}的其他基金

MRI: Acquisition of Ultra-High Speed Data Characterization System for Convergent Research in Big Data Era
MRI:获取超高速数据表征系统,用于大数据时代的融合研究
  • 批准号:
    2117424
  • 财政年份:
    2021
  • 资助金额:
    $ 39.85万
  • 项目类别:
    Standard Grant
Energy Efficient (sub)mm-Wave Transceiver Phased Array for High Speed and Secure Wireless Communications
用于高速、安全无线通信的节能(亚)毫米波收发器相控阵
  • 批准号:
    1932821
  • 财政年份:
    2019
  • 资助金额:
    $ 39.85万
  • 项目类别:
    Standard Grant
CAREER:Terahertz Interconnect, the Last Centimeter Data Link
事业:太赫兹互连,最后一厘米数据链路
  • 批准号:
    1351915
  • 财政年份:
    2014
  • 资助金额:
    $ 39.85万
  • 项目类别:
    Standard Grant
EAGER: High Performance Silicon based Terahertz Front End Circuits for Chip-to-Chip Interconnect
EAGER:用于芯片间互连的高性能硅基太赫兹前端电路
  • 批准号:
    1348883
  • 财政年份:
    2013
  • 资助金额:
    $ 39.85万
  • 项目类别:
    Standard Grant

相似海外基金

A novel damage characterization technique based on adaptive deconvolution extraction algorithm of multivariate AE signals for accurate diagnosis of osteoarthritic knees
基于多变量 AE 信号自适应反卷积提取算法的新型损伤表征技术,用于准确诊断膝关节骨关节炎
  • 批准号:
    24K07389
  • 财政年份:
    2024
  • 资助金额:
    $ 39.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The challenge of scaling methane fluxes in mangrove and mountain forests for an accurate methane budget
缩放红树林和山地森林甲烷通量以获得准确的甲烷预算的挑战
  • 批准号:
    24K01797
  • 财政年份:
    2024
  • 资助金额:
    $ 39.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Adapting Position-Based Dynamics as a Biophysically Accurate and Efficient Modeling Framework for Dynamic Cell Shapes
采用基于位置的动力学作为动态细胞形状的生物物理准确且高效的建模框架
  • 批准号:
    24K16962
  • 财政年份:
    2024
  • 资助金额:
    $ 39.85万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
"Mimicking Human Head Sound Responses": Towards an Anatomically Accurate Head Prototype for Bone Conduction Crosstalk Cancellation Analysis with Humans
“模仿人类头部声音反应”:构建解剖学上准确的头部原型,用于人类骨传导串扰消除分析
  • 批准号:
    24K20786
  • 财政年份:
    2024
  • 资助金额:
    $ 39.85万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Accurate analysis of PTM enzymes with an mRNA display/deep learning platform
利用 mRNA 显示/深度学习平台准确分析 PTM 酶
  • 批准号:
    23K23485
  • 财政年份:
    2024
  • 资助金额:
    $ 39.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Synergising Process-Based and Machine Learning Models for Accurate and Explainable Crop Yield Prediction along with Environmental Impact Assessment
协同基于流程和机器学习模型,实现准确且可解释的作物产量预测以及环境影响评估
  • 批准号:
    BB/Y513763/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39.85万
  • 项目类别:
    Research Grant
Developing an accurate non-Newtonian surface rheology model
开发精确的非牛顿表面流变模型
  • 批准号:
    EP/Y031644/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39.85万
  • 项目类别:
    Research Grant
CAREER: CRISPR-based biosensors for the ultra-accurate detection of disease-related single nucleotide polymorphisms (SNPs)
职业:基于 CRISPR 的生物传感器,用于超准确检测与疾病相关的单核苷酸多态性 (SNP)
  • 批准号:
    2421137
  • 财政年份:
    2024
  • 资助金额:
    $ 39.85万
  • 项目类别:
    Continuing Grant
CAREER: CRISPR-based biosensors for the ultra-accurate detection of disease-related single nucleotide polymorphisms (SNPs)
职业:基于 CRISPR 的生物传感器,用于超准确检测与疾病相关的单核苷酸多态性 (SNP)
  • 批准号:
    2339868
  • 财政年份:
    2024
  • 资助金额:
    $ 39.85万
  • 项目类别:
    Continuing Grant
A Framework for Fast, Accurate, and Explainable Computerized Adaptive Language Test
快速、准确且可解释的计算机化自适应语言测试框架
  • 批准号:
    24K20903
  • 财政年份:
    2024
  • 资助金额:
    $ 39.85万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了