CAREER: Scalable Approaches for Large-Scale Data-driven Bayesian Inverse Problems in High Dimensional Parameter Spaces

职业:高维参数空间中大规模数据驱动的贝叶斯逆问题的可扩展方法

基本信息

  • 批准号:
    1845799
  • 负责人:
  • 金额:
    $ 52.57万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-01-15 至 2024-12-31
  • 项目状态:
    已结题

项目摘要

Inverse problems are contemporary tools in cyberinfrastructure and mathematical research, especially in inferring knowledge from observational and experimental data together with simulations and models. They are pervasive in scientific discovery and decision-making for complex, natural, engineered, and societal systems, and thus are of paramount importance across many disciplines including engineering mathematical and physical sciences. For inverse problems that serve as a basis for design, control, discovery, and decision-making, their solutions must be equipped with certain degree of confidence. Though the past decades have seen advances in both theories and computational algorithms for inverse problems, quantifying the uncertainty in their solution remains challenging and an open problem facing the computational science and engineering community. The drastic increase in the quantity of measurements and data holds promise for data-driven scientific discoveries. However, much data remains unused as inversion - a systematic tool to infer knowledge from data - is unable to scale up to the quantity of data being generated. This proposal develops computational and data scalable strategies to tackle the challenge of large-scale data-driven statistical inverse problems in order to continue the pace of scientific discoveries and to promote the progress of science, aligned with NSF's mission. The proposed integrated research and education program contributes uncertainty quantification (UQ) skills to modern education and training of future STEM workforce; provides scalable inverse/UQ mathematical algorithms/software that potentially advance the frontiers of computational science and engineering; provides inverse/UQ cutting-edge algorithms/software that can potentially improve oil/gas discovery in order to meet the ever-increasing demand in energy; constitutes the PI?s ongoing contribution to the pipeline of US scientists, engineers, and innovators to maintain the US global leadership in technology and sciences; and educates and supplies additional leaders/experts from underrepresented minorities to Big-Data/UQ research communities.This project develops an integrated education and cross-disciplinary research program that tackles big-data-driven large-scale uncertainty quantification (UQ) problems in high dimensional parameter spaces. The project rigorously develops a randomized misfit approach that exploits extreme computing systems to efficiently reduce the amount of ever-growing observational data. It develops a comprehensive ensemble transform approach that has potential to solves large-scale statistical Bayesian inverse problems in a scalable manner using current and future NSF computing infrastructures. The novelty of the proposed interdisciplinary approach is to bring together advances from stochastic programming, probability theory, parallel computing, and computer vision to produce a new and rigorous data reduction method for inverse/UQ problems; justifiable efficient sampling approaches for large-scale Bayesian inverse problems; and open-source software implementing these approaches. These products can enable mathematicians, scientists, and engineers in sensing-based disciplines to address challenging inverse/UQ problems that can lead to new scientific discoveries. Inverse seismic wave propagation is chosen as the demanding testbed for the developments.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
逆问题是网络基础设施和数学研究中的当代工具,特别是从观测和实验数据以及模拟和模型中推断知识。它们普遍存在于复杂、自然、工程和社会系统的科学发现和决策中,因此在包括工程数学和物理科学在内的许多学科中至关重要。对于作为设计、控制、发现和决策基础的反问题,其解必须具有一定的置信度。虽然在过去的几十年里,逆问题的理论和计算算法都取得了进展,但量化其解决方案中的不确定性仍然具有挑战性,并且是计算科学和工程界面临的一个开放性问题。测量和数据数量的急剧增加为数据驱动的科学发现带来了希望。然而,许多数据仍然未被使用,因为反演-一种从数据中推断知识的系统工具-无法扩展到生成的数据量。该提案开发了计算和数据可扩展的策略,以应对大规模数据驱动的统计逆问题的挑战,以继续科学发现的步伐并促进科学的进步,与NSF的使命保持一致。拟议的综合研究和教育计划为现代教育和未来STEM劳动力的培训提供了不确定性量化(UQ)技能;提供可扩展的逆/UQ数学算法/软件,可能会推进计算科学和工程的前沿;提供逆/UQ尖端算法/软件,可能会改善石油/天然气发现,以满足不断增长的能源需求;构成PI?该项目旨在为美国科学家、工程师和创新者提供持续的贡献,以保持美国在技术和科学领域的全球领导地位;并为大数据/UQ研究社区提供来自代表性不足的少数民族的领导者/专家。该项目开发了一个综合教育和跨学科研究计划,解决高维参数空间中大数据驱动的大规模不确定性量化(UQ)问题。该项目严格开发了一种随机失配方法,利用极端计算系统有效地减少不断增长的观测数据量。它开发了一种全面的集成变换方法,该方法有可能使用当前和未来的NSF计算基础设施以可扩展的方式解决大规模统计贝叶斯逆问题。所提出的跨学科方法的新奇是将随机规划,概率论,并行计算和计算机视觉的进步结合在一起,为逆/UQ问题产生一种新的严格的数据简化方法;大规模贝叶斯逆问题的合理有效采样方法;以及实现这些方法的开源软件。这些产品可以使数学家、科学家和传感学科的工程师解决具有挑战性的逆/UQ问题,从而带来新的科学发现。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Solving Bayesian Inverse Problems via Variational Autoencoders
通过变分自动编码器解决贝叶斯逆问题
An autoencoder compression approach for accelerating large-scale inverse problems
  • DOI:
    10.1088/1361-6420/acfbe1
  • 发表时间:
    2023-04
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    J. Wittmer;Jacob Badger;H. Sundar;T. Bui-Thanh
  • 通讯作者:
    J. Wittmer;Jacob Badger;H. Sundar;T. Bui-Thanh
The Optimality of Bayes' Theorem
贝叶斯定理的最优性
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bui-Thanh, T.
  • 通讯作者:
    Bui-Thanh, T.
Hierarchical Matrix Approximations of Hessians Arising in Inverse Problems Governed by PDEs
偏微分方程反问题中 Hessians 的层次矩阵逼近
  • DOI:
    10.1137/19m1270367
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Ambartsumyan, Ilona;Boukaram, Wajih;Bui-Thanh, Tan;Ghattas, Omar;Keyes, David;Stadler, Georg;Turkiyyah, George;Zampini, Stefano
  • 通讯作者:
    Zampini, Stefano
A unified and constructive framework for the universality of neural networks
神经网络通用性的统一和建设性框架
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tan Bui-Thanh其他文献

Large-scale inverse model analyses employing fast randomized data reduction
  • DOI:
    10.1002/2016wr020299
  • 发表时间:
    2017-08-01
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Lin, Youzuo;Le, Ellen B.;Tan Bui-Thanh
  • 通讯作者:
    Tan Bui-Thanh
A model-constrained discontinuous Galerkin Network (DGNet) for compressible Euler equations with out-of-distribution generalization
一种用于具有分布外泛化的可压缩欧拉方程的模型约束间断伽辽金网络(DGNet)
An adaptive and stability-promoting layerwise training approach for sparse deep neural network architecture
一种用于稀疏深度神经网络架构的自适应且促进稳定性的逐层训练方法

Tan Bui-Thanh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tan Bui-Thanh', 18)}}的其他基金

I-Corps: Fast and Accurate Artificial Intelligence/Machine Learning Solutions to Inverse and Imaging Problems
I-Corps:针对逆向和成像问题的快速准确的人工智能/机器学习解决方案
  • 批准号:
    2224299
  • 财政年份:
    2022
  • 资助金额:
    $ 52.57万
  • 项目类别:
    Standard Grant
OAC Core: Toward a Rigorous and Reliable Scientific Deep Learning Framework for Forward, Inverse, and UQ Problems
OAC 核心:针对正向、逆向和 UQ 问题建立严格可靠的科学深度学习框架
  • 批准号:
    2212442
  • 财政年份:
    2022
  • 资助金额:
    $ 52.57万
  • 项目类别:
    Standard Grant
CDS&E: Collaborative Research: Strategies for Managing Data in Uncertainty Quantification at Extreme Scales
CDS
  • 批准号:
    1808576
  • 财政年份:
    2018
  • 资助金额:
    $ 52.57万
  • 项目类别:
    Standard Grant
A Scalable High-Order Discontinuous Finite Element Framework for Partial Differential Equations: with Application to Geophysical Fluid Flows
偏微分方程的可扩展高阶不连续有限元框架:在地球物理流体流动中的应用
  • 批准号:
    1620352
  • 财政年份:
    2016
  • 资助金额:
    $ 52.57万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队

相似海外基金

CAREER: Smart and scalable approaches for developing multimodal optical and acoustic imaging technologies
职业:开发多模态光学和声学成像技术的智能且可扩展的方法
  • 批准号:
    2238878
  • 财政年份:
    2023
  • 资助金额:
    $ 52.57万
  • 项目类别:
    Continuing Grant
Towards Scalable, Resilient, and Interpretable Approaches for Machine Learning based Malware Detectors
为基于机器学习的恶意软件检测器提供可扩展、有弹性和可解释的方法
  • 批准号:
    RGPIN-2020-04738
  • 财政年份:
    2022
  • 资助金额:
    $ 52.57万
  • 项目类别:
    Discovery Grants Program - Individual
Turing AI Fellowship: Probabilistic Algorithms for Scalable and Computable Approaches to Learning (PASCAL)
图灵人工智能奖学金:可扩展和可计算学习方法的概率算法 (PASCAL)
  • 批准号:
    EP/V022636/1
  • 财政年份:
    2021
  • 资助金额:
    $ 52.57万
  • 项目类别:
    Fellowship
CAREER: Scalable approaches for systems virology
职业:系统病毒学的可扩展方法
  • 批准号:
    2047598
  • 财政年份:
    2021
  • 资助金额:
    $ 52.57万
  • 项目类别:
    Continuing Grant
Towards Scalable, Resilient, and Interpretable Approaches for Machine Learning based Malware Detectors
为基于机器学习的恶意软件检测器提供可扩展、有弹性和可解释的方法
  • 批准号:
    RGPIN-2020-04738
  • 财政年份:
    2021
  • 资助金额:
    $ 52.57万
  • 项目类别:
    Discovery Grants Program - Individual
Survival Probability Approaches and Scalable Algorithms to Elucidate Molecular-Tether Reactions in Immunoreception and Cell Mechanics
阐明免疫接收和细胞力学中分子系链反应的生存概率方法和可扩展算法
  • 批准号:
    2052668
  • 财政年份:
    2021
  • 资助金额:
    $ 52.57万
  • 项目类别:
    Continuing Grant
Innovative approaches to developing scalable and sustainable adolescent maternal mental health interventions in Kenya and Mozambique
在肯尼亚和莫桑比克制定可扩展和可持续的青少年孕产妇心理健康干预措施的创新方法
  • 批准号:
    MR/T019662/1
  • 财政年份:
    2020
  • 资助金额:
    $ 52.57万
  • 项目类别:
    Fellowship
Towards Scalable, Resilient, and Interpretable Approaches for Machine Learning based Malware Detectors
为基于机器学习的恶意软件检测器提供可扩展、有弹性和可解释的方法
  • 批准号:
    RGPIN-2020-04738
  • 财政年份:
    2020
  • 资助金额:
    $ 52.57万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Scalable Approaches for Multiphysics Fluid Simulation
职业:多物理场流体仿真的可扩展方法
  • 批准号:
    1943036
  • 财政年份:
    2020
  • 资助金额:
    $ 52.57万
  • 项目类别:
    Continuing Grant
Towards Scalable, Resilient, and Interpretable Approaches for Machine Learning based Malware Detectors
为基于机器学习的恶意软件检测器提供可扩展、有弹性和可解释的方法
  • 批准号:
    DGECR-2020-00275
  • 财政年份:
    2020
  • 资助金额:
    $ 52.57万
  • 项目类别:
    Discovery Launch Supplement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了