CDS&E: Collaborative Research: Strategies for Managing Data in Uncertainty Quantification at Extreme Scales
CDS
基本信息
- 批准号:1808576
- 负责人:
- 金额:$ 40.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The exponential increase in the quantity of measurements and data holds tremendous promise for data-driven scientific discovery and decision making. In many cases, data-driven scientific discovery is mathematically formulated as an inverse problem. For inverse problems that serve as a basis for discovery and decision-making for complex problems, the uncertainty in its solutions must be quantified. Though the past decades have seen tremendous advances in both theories and computational algorithms for inverse problems, quantifying the uncertainty (UQ) in their solutions taking big-data issues into account remains challenging. This is largely due to computationally demanding nature of existing mathematical techniques that are unable to scale up to the amount of data being generated. Consequently, much of the available data remains unused. This project develops UQ algorithms that are both computationally scalable as well as datascalable for making scientific progresses in geosciences and medical imaging. In particular, the proposed methods are evaluated in the context of two challenging data-driven applications: (1) from large amount of seismograms (records of the ground motion) perform geophysical imaging to infer earth's interior structure to better understand earthquakes, and (2) from magnetic resonance (MR) cine images of patients estimate the heart's function (e.g. motion, contraction) to detect early onset of heart disease (cardiomyopathy).The goal of this collaborative research project is to develop an integrated research program that addresses the data management and data analytics arising from both observations and scientific simulations, with applications from diverse domains at extreme scales. The project develops innovative statistical, mathematical, and parallel computational methods to manage the large amounts of simulation data as well as the ever increasing amounts of observation data required for extreme-scale UQ problems in general and Bayesian inverse problems in particular. These methods will be of immediate practical utility to scientists and engineers dealing with big data and large-scale UQ problems in sensing-based disciplines, geosciences, climatology, medical imaging, etc. The successful completion of the project would provide a first step towards the development of mathematical and computational methods for a wide range of data-driven large-scale inverse and UQ challenges that can lead to original scientific discoveries and promote the progress of science.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
测量和数据数量的指数增长为数据驱动的科学发现和决策带来了巨大的希望。在许多情况下,数据驱动的科学发现在数学上被表述为一个逆问题。对于作为复杂问题发现和决策基础的反问题,其解的不确定性必须被量化。尽管在过去的几十年里,反问题的理论和计算算法都取得了巨大的进步,但考虑到大数据问题,量化他们解决方案中的不确定性(UQ)仍然具有挑战性。这在很大程度上是因为现有数学技术对计算的要求很高,无法扩大到生成的数据量。因此,许多可用的数据仍然没有被使用。该项目开发了UQ算法,这些算法既可以在计算上进行扩展,也可以在数据上进行扩展,以便在地球科学和医学成像方面取得科学进展。具体地说,所提出的方法是在两个具有挑战性的数据驱动应用的背景下进行评估的:(1)从大量的地震图(地面运动的记录)执行地球物理成像以推断地球内部结构以更好地了解地震,以及(2)从患者的磁共振(MR)电影图像估计心脏功能(例如运动、收缩)以检测早期心脏病(心肌病)。该合作研究项目的目标是开发一个集成的研究计划,以解决来自观测和科学模拟的数据管理和数据分析,并在极端尺度上使用来自不同领域的应用。该项目开发了创新的统计、数学和并行计算方法,以管理极端规模的UQ问题,特别是贝叶斯反问题所需的大量模拟数据和不断增加的观测数据。这些方法将对处理基于传感的学科、地球科学、气候学、医学成像等领域的大数据和大规模UQ问题的科学家和工程师立即产生实用价值。该项目的成功完成将为开发广泛的数据驱动的大规模逆和UQ挑战的数学和计算方法提供第一步,这些挑战可以导致原创性的科学发现,并促进科学的进步。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Solving Bayesian Inverse Problems via Variational Autoencoders
通过变分自动编码器解决贝叶斯逆问题
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Goh, H.
- 通讯作者:Goh, H.
An autoencoder compression approach for accelerating large-scale inverse problems
- DOI:10.1088/1361-6420/acfbe1
- 发表时间:2023-04
- 期刊:
- 影响因子:2.1
- 作者:J. Wittmer;Jacob Badger;H. Sundar;T. Bui-Thanh
- 通讯作者:J. Wittmer;Jacob Badger;H. Sundar;T. Bui-Thanh
A Model-Constrained Tangent Slope Learning Approach for Dynamical Systems
- DOI:10.1080/10618562.2022.2146677
- 发表时间:2022-08
- 期刊:
- 影响因子:1.3
- 作者:Hai V. Nguyen;T. Bui-Thanh
- 通讯作者:Hai V. Nguyen;T. Bui-Thanh
A Multilevel Block Preconditioner for the HDG Trace System Applied to Incompressible Resistive MHD
- DOI:10.1016/j.cma.2022.115775
- 发表时间:2020-12
- 期刊:
- 影响因子:0
- 作者:Sriramkrishnan Muralikrishnan;Stephen Shannon;T. Bui-Thanh;J. Shadid
- 通讯作者:Sriramkrishnan Muralikrishnan;Stephen Shannon;T. Bui-Thanh;J. Shadid
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tan Bui-Thanh其他文献
Large-scale inverse model analyses employing fast randomized data reduction
- DOI:
10.1002/2016wr020299 - 发表时间:
2017-08-01 - 期刊:
- 影响因子:5.4
- 作者:
Lin, Youzuo;Le, Ellen B.;Tan Bui-Thanh - 通讯作者:
Tan Bui-Thanh
A model-constrained discontinuous Galerkin Network (DGNet) for compressible Euler equations with out-of-distribution generalization
一种用于具有分布外泛化的可压缩欧拉方程的模型约束间断伽辽金网络(DGNet)
- DOI:
10.1016/j.cma.2025.117912 - 发表时间:
2025-05-15 - 期刊:
- 影响因子:7.300
- 作者:
Hai Van Nguyen;Jau-Uei Chen;Tan Bui-Thanh - 通讯作者:
Tan Bui-Thanh
A divergence-free and <math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si3.svg" display="inline" id="d1e7449" class="math"><mrow><mi>H</mi><mrow><mo>(</mo><mi>d</mi><mi>i</mi><mi>v</mi><mo>)</mo></mrow></mrow></math>-conforming embedded-hybridized DG method for the incompressible resistive MHD equations
- DOI:
10.1016/j.cma.2024.117415 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:
- 作者:
Jau-Uei Chen;Tamás L. Horváth;Tan Bui-Thanh - 通讯作者:
Tan Bui-Thanh
An adaptive and stability-promoting layerwise training approach for sparse deep neural network architecture
一种用于稀疏深度神经网络架构的自适应且促进稳定性的逐层训练方法
- DOI:
10.1016/j.cma.2025.117938 - 发表时间:
2025-06-01 - 期刊:
- 影响因子:7.300
- 作者:
C.G. Krishnanunni;Tan Bui-Thanh - 通讯作者:
Tan Bui-Thanh
Tan Bui-Thanh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tan Bui-Thanh', 18)}}的其他基金
I-Corps: Fast and Accurate Artificial Intelligence/Machine Learning Solutions to Inverse and Imaging Problems
I-Corps:针对逆向和成像问题的快速准确的人工智能/机器学习解决方案
- 批准号:
2224299 - 财政年份:2022
- 资助金额:
$ 40.98万 - 项目类别:
Standard Grant
OAC Core: Toward a Rigorous and Reliable Scientific Deep Learning Framework for Forward, Inverse, and UQ Problems
OAC 核心:针对正向、逆向和 UQ 问题建立严格可靠的科学深度学习框架
- 批准号:
2212442 - 财政年份:2022
- 资助金额:
$ 40.98万 - 项目类别:
Standard Grant
CAREER: Scalable Approaches for Large-Scale Data-driven Bayesian Inverse Problems in High Dimensional Parameter Spaces
职业:高维参数空间中大规模数据驱动的贝叶斯逆问题的可扩展方法
- 批准号:
1845799 - 财政年份:2019
- 资助金额:
$ 40.98万 - 项目类别:
Continuing Grant
A Scalable High-Order Discontinuous Finite Element Framework for Partial Differential Equations: with Application to Geophysical Fluid Flows
偏微分方程的可扩展高阶不连续有限元框架:在地球物理流体流动中的应用
- 批准号:
1620352 - 财政年份:2016
- 资助金额:
$ 40.98万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348998 - 财政年份:2025
- 资助金额:
$ 40.98万 - 项目类别:
Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348999 - 财政年份:2025
- 资助金额:
$ 40.98万 - 项目类别:
Standard Grant
Collaborative Research: Investigating Southern Ocean Sea Surface Temperatures and Freshening during the Late Pliocene and Pleistocene along the Antarctic Margin
合作研究:调查上新世晚期和更新世沿南极边缘的南大洋海面温度和新鲜度
- 批准号:
2313120 - 财政年份:2024
- 资助金额:
$ 40.98万 - 项目类别:
Standard Grant
Collaborative Research: Non-Linearity and Feedbacks in the Atmospheric Circulation Response to Increased Carbon Dioxide (CO2)
合作研究:大气环流对二氧化碳 (CO2) 增加的响应的非线性和反馈
- 批准号:
2335762 - 财政年份:2024
- 资助金额:
$ 40.98万 - 项目类别:
Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
- 批准号:
2335802 - 财政年份:2024
- 资助金额:
$ 40.98万 - 项目类别:
Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
- 批准号:
2335801 - 财政年份:2024
- 资助金额:
$ 40.98万 - 项目类别:
Standard Grant
Collaborative Research: Holocene biogeochemical evolution of Earth's largest lake system
合作研究:地球最大湖泊系统的全新世生物地球化学演化
- 批准号:
2336132 - 财政年份:2024
- 资助金额:
$ 40.98万 - 项目类别:
Standard Grant
Collaborative Research: LTREB: The importance of resource availability, acquisition, and mobilization to the evolution of life history trade-offs in a variable environment.
合作研究:LTREB:资源可用性、获取和动员对于可变环境中生命史权衡演变的重要性。
- 批准号:
2338394 - 财政年份:2024
- 资助金额:
$ 40.98万 - 项目类别:
Continuing Grant
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
- 批准号:
2325311 - 财政年份:2024
- 资助金额:
$ 40.98万 - 项目类别:
Standard Grant
Collaborative Research: BoCP-Implementation: Testing Evolutionary Models of Biotic Survival and Recovery from the Permo-Triassic Mass Extinction and Climate Crisis
合作研究:BoCP-实施:测试二叠纪-三叠纪大规模灭绝和气候危机中生物生存和恢复的进化模型
- 批准号:
2325380 - 财政年份:2024
- 资助金额:
$ 40.98万 - 项目类别:
Standard Grant














{{item.name}}会员




