CAREER: Automating the measurement and management of the radio spectrum for future spectrum-sharing applications
职业:自动化无线电频谱的测量和管理,以适应未来的频谱共享应用
基本信息
- 批准号:1845858
- 负责人:
- 金额:$ 51.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-15 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
A growing number of domains that drive economic growth and humanity's well-being, including healthcare, emergency management and national defense, hinge on wireless network connectivity. This has created a market potential of $640.9 billion, which cannot be realized as existing networks operate at capacity. Despite this potential, only 8% of the radio spectrum is allocated to wireless communication technologies. This minimal allocation creates artificial scarcity of frequency resources, whereby popular bands are saturated, while others are under-utilized. In response, wireless technologies have begun to incorporate new hardware and software to boost their spectrum efficiency through opportunistic frequency reuse. While promising, this trajectory of innovation cannot be sustained unless we establish a framework for principled spectrum measurement and management that can embrace unforeseen network and sensor capabilities in support of future spectrum policy, policing and technology. This project develops a long-term, integrated program of research, education and outreach to (i) establish a scientific and technological framework for automated spectrum measurement in support of shared-spectrum access, and (ii) to train the next generation of wireless specialists at the intersection of networks, digital communications and machine learning. The project will work closely with industry and standardization efforts to ensure broader adoption.The research will be carried out in three thrusts at the confluence of signal processing, digital communications, machine learning, graph mining, and large-scale measurement. First, it will study the effects of real-world scan imperfections on signal features. Following these insights, the project will contribute algorithms for spectrum cognizance and transmitter fingerprinting from imperfect scans. Second, it will enable application-driven measurement by creating an analytical framework that links sensor properties with data quality and algorithm performance. Third, models and algorithms will be integrated in an open system accessible to the community. This project will lay the foundation for future-proof and application-driven spectrum measurement that leverages wide-band and heterogeneous sensing for end-to-end support of emerging wireless networks. It will contribute data-driven and platform-aware abstractions, models and algorithms that produce domain-informed features for automatic spectrum analytics. The outcomes will bridge the existing gap between measurement capabilities and algorithm requirements while tackling realistic scenarios with rogue or incompletely scanned transmitters. The project will produce a cost-utility framework to explore tradeoffs between sensor price, bandwidth, computation and power; and algorithm accuracy, stability and confidence. The integration of research outcomes into an open system will allow systematic and reproducible research and education, while complying with and informing standardization efforts.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
越来越多的领域推动了经济增长和人类的福祉,包括医疗保健,应急管理和国防,在无线网络连接方面取决。这创造了6409亿美元的市场潜力,因为现有网络以容量运行而无法实现。尽管有潜力,但只有8%的无线电频谱分配给无线通信技术。这种最小的分配产生了频率资源的人为稀缺性,从而使流行的乐队饱和,而其他频段则未被充分利用。作为响应,无线技术已经开始合并新的硬件和软件,以通过机会频率重复使用来提高其光谱效率。尽管我们有希望,但这种创新轨迹将无法维持,除非我们为有原则的频谱测量和管理框架建立框架,从而可以采用不可预见的网络和传感器功能来支持未来的频谱政策,警务和技术。该项目开发了一项长期的研究,教育和宣传计划(i)(i)建立一个科学和技术框架,用于自动频谱测量,以支持共享光谱访问,(ii)在网络,数字通信和机器学习的交汇处培训下一代无线专家。该项目将与行业和标准化工作紧密合作,以确保更广泛的采用。研究将在信号处理,数字通信,机器学习,图形挖掘和大规模测量的汇合处进行三个推力进行。首先,它将研究现实世界扫描缺陷对信号特征的影响。遵循这些见解,该项目将为不完美扫描的频谱认知和发射器指纹构成算法。其次,它将通过创建将传感器属性与数据质量和算法性能联系起来的分析框架来实现以应用程序为导向的测量。第三,模型和算法将集成到社区可访问的开放系统中。该项目将为未来的防止和应用程序驱动的频谱测量奠定基础,该测量利用宽频段和异质感测度以端到端的端到端支持新兴的无线网络。它将贡献数据驱动和平台感知的抽象,模型和算法,这些算法和算法为自动频谱分析生成域信息。结果将弥合测量能力和算法需求之间的现有差距,同时使用流氓或不完全扫描的发射器来应对现实情况。该项目将产生一个成本效用框架,以探索传感器价格,带宽,计算和功率之间的权衡;和算法准确性,稳定性和信心。将研究成果整合到开放系统中,将允许系统和可重现的研究和教育,同时遵守和告知标准化工作。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子评估来支持的,并具有更广泛的影响。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Robust and Efficient Modulation Recognition Based on Local Sequential IQ Features
- DOI:10.1109/infocom.2019.8737397
- 发表时间:2019-04
- 期刊:
- 影响因子:0
- 作者:Wei Xiong;Petko Bogdanov;M. Zheleva
- 通讯作者:Wei Xiong;Petko Bogdanov;M. Zheleva
Evolutionary Optimization of Residual Neural Network Architectures for Modulation Classification
- DOI:10.1109/tccn.2021.3137519
- 发表时间:2022-06-01
- 期刊:
- 影响因子:8.6
- 作者:Perenda, Erma;Rajendran, Sreeraj;Zheleva, Mariya
- 通讯作者:Zheleva, Mariya
Exploiting Self-Similarity for Under-Determined MIMO Modulation Recognition
- DOI:10.1109/infocom41043.2020.9155247
- 发表时间:2020-07
- 期刊:
- 影响因子:0
- 作者:Wei Xiong;Lin Zhang;M. McNeil;Petko Bogdanov;M. Zheleva
- 通讯作者:Wei Xiong;Lin Zhang;M. McNeil;Petko Bogdanov;M. Zheleva
Radio Dynamic Zones: Motivations, challenges, and opportunities to catalyze spectrum coexistence
无线电动态区:促进频谱共存的动机、挑战和机遇
- DOI:10.1109/mcom.005.2200389
- 发表时间:2023
- 期刊:
- 影响因子:11.2
- 作者:Zheleva, Mariya;Anderson, Christopher R.;Aksoy, Mustafa;Johnson, Joel T.;Affinnih, Habib;DePree, Christopher G.
- 通讯作者:DePree, Christopher G.
MODELESS: MODulation rEcognition with LimitEd SuperviSion
- DOI:10.1109/secon52354.2021.9491617
- 发表时间:2021-07
- 期刊:
- 影响因子:0
- 作者:Wei Xiong;Petko Bogdanov;M. Zheleva
- 通讯作者:Wei Xiong;Petko Bogdanov;M. Zheleva
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mariya Zheleva其他文献
Mariya Zheleva的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mariya Zheleva', 18)}}的其他基金
Conference: Catalyzing the Future of Spectrum Coexistence Through a National Radio Dynamic Zone Workshop
会议:通过国家无线电动态区研讨会促进频谱共存的未来
- 批准号:
2322875 - 财政年份:2023
- 资助金额:
$ 51.05万 - 项目类别:
Standard Grant
SCC: Integrating Heterogeneous Wide-Area Networks and Advanced Data Science to Bridge the Digital Divide in Rural Emergency Preparedness and Response
SCC:集成异构广域网和先进数据科学,弥合农村应急准备和响应中的数字鸿沟
- 批准号:
1831547 - 财政年份:2018
- 资助金额:
$ 51.05万 - 项目类别:
Standard Grant
CRII: NeTS: Next Generation Spectrum Measurement Algorithms and Infrastructures
CRII:NeTS:下一代频谱测量算法和基础设施
- 批准号:
1657476 - 财政年份:2017
- 资助金额:
$ 51.05万 - 项目类别:
Standard Grant
相似国自然基金
当机器成为我们的领导:领导职能自动化的内涵、测量及其多层次后果研究
- 批准号:72371260
- 批准年份:2023
- 资助金额:40.00 万元
- 项目类别:面上项目
时频双模自动化太赫兹信道测量仪器研制
- 批准号:62027806
- 批准年份:2020
- 资助金额:853 万元
- 项目类别:国家重大科研仪器研制项目
在超广角眼底血管荧光造影上自动化精确测量糖尿病视网膜病变的血管改变及其临床应用
- 批准号:81900863
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
自动化认知调节策略及其训练对成年早期抑郁的干预:行为与脑的可塑性研究
- 批准号:31671164
- 批准年份:2016
- 资助金额:61.0 万元
- 项目类别:面上项目
超大视场光学巡天中光变曲线的自动化周期确定算法研究
- 批准号:11673070
- 批准年份:2016
- 资助金额:66.0 万元
- 项目类别:面上项目
相似海外基金
Automating the Discovery of Clinically-Relevant Intracellular Signaling Responses in Immune Cell-Types
自动发现免疫细胞类型中临床相关的细胞内信号转导反应
- 批准号:
10741148 - 财政年份:2023
- 资助金额:
$ 51.05万 - 项目类别:
NeTS: Small: RUI: Automating Active Measurement Metadata Collection and Analysis
NeTS:小型:RUI:自动化主动测量元数据收集和分析
- 批准号:
1814537 - 财政年份:2018
- 资助金额:
$ 51.05万 - 项目类别:
Standard Grant
Enabling value-based healthcare through automating risk assessment for episode-based care
通过对基于事件的护理进行自动化风险评估,实现基于价值的医疗保健
- 批准号:
9464424 - 财政年份:2017
- 资助金额:
$ 51.05万 - 项目类别:
Automating MRI Delta T1 Methods for the Routine Assessment of Brain Tumor Burden
用于脑肿瘤负担常规评估的自动化 MRI Delta T1 方法
- 批准号:
8253047 - 财政年份:2012
- 资助金额:
$ 51.05万 - 项目类别:
Automating Performance Metrics for Quality Improvement in Complex Chronic Disease
自动化绩效指标以提高复杂慢性疾病的质量
- 批准号:
8596733 - 财政年份:2011
- 资助金额:
$ 51.05万 - 项目类别: