Enabling value-based healthcare through automating risk assessment for episode-based care
通过对基于事件的护理进行自动化风险评估,实现基于价值的医疗保健
基本信息
- 批准号:9464424
- 负责人:
- 金额:$ 22.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:AttentionCardiacCaringChronicClinicClinicalClinical DataComplicationContinuity of Patient CareContractsCost ControlDataData CollectionData QualityData SetDiagnosisFoundationsGoalsHealth Care ReformHealthcareHealthcare SystemsHome environmentHospitalsHourInsuranceLabelMeasurementMeasuresMedicareModelingNatural Language ProcessingOntologyOutpatientsPatient-Focused OutcomesPatientsPhasePhenotypeProceduresProviderReplacement ArthroplastyResearchResourcesRiskRisk AdjustmentRisk AssessmentRunningSmall Business Innovation Research GrantTechnologyTestingTextTimeUnited StatesWorkbasecare episodeclinical careclinically relevantconcept mappingcostfeedingfinancial incentiveimprovedinterestoncologypaymentphysical therapistprogramssocialsuccessvector
项目摘要
Project Summary
Value-based healthcare implementation relies on understanding risk. 1 Early models, such as Medicare
Advantage, use annual measures of risk under a risk adjustment factor (RAF) to offer financial incentive
to payers and hospitals to work together. 2 More advanced models, such as bundled payments, target
the periods of greatest quality variability, specifically episodes of care such as joint replacement,
oncology diagnosis, and cardiac procedures. In these episodes, many types of providers, from hospitals
to outpatient physical therapists, need to work together to reduce rates of complication and
readmission. Risk levels are used to adjust payment for payer and providers and to determine which
patients require additional resources in the hospital, clinic, or home.
Unfortunately, existing risk models lack key features needed for episode-based care, which requires
both financial alignment and accurate and immediate information to adjust clinical resources for a given
case. 3 4 A better model would include all conditions relevant to an episode rather than just chronic
conditions, addition of social determinants, and an automated approach to retrieve the information in
hours rather than months. Thus, this Small Business Innovation Research (SBIR) Phase I program
includes the following Specific Aims:
1. Create the phenotyping components required to define an accurate and comprehensive model
of episode-based risk, including: (i) extract clinical and social features from clinical data using
natural language processing (NLP), (ii) map concepts including social features to an ontology
that will support normalized data use, (iii) build a feature vector for each record that can be
used to feed a risk model that accounts for relevant clinical and social risk
2. Validate the phenotyping components using de-identified longitudinal clinical data for 10,000
patients
In this research program, Phase I will tackle the most difficult challenges, including leveraging narrative
text to recognize time-labeled social and clinical features influencing an episode of care. Success criteria
will be accurate recognition of key underlying features that have not been available in risk models to
date. Phase II will build upon the validated technology to create an episode-based risk model run on
narrative and discrete clinical data and tested against actual patient outcomes. Success criteria will be a
validated episode-based risk model to support value-based contracting and value-based clinical care.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Jay Riskin其他文献
Daniel Jay Riskin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Jay Riskin', 18)}}的其他基金
Transforming Real-world evidence with Unstructured and Structured data to advance Tailored therapy (TRUST)
使用非结构化和结构化数据转换现实世界证据以推进定制治疗 (TRUST)
- 批准号:
10450726 - 财政年份:2020
- 资助金额:
$ 22.26万 - 项目类别:
Transforming Real-world evidence with Unstructured and Structured data to advance Tailored therapy (TRUST)
使用非结构化和结构化数据转换现实世界证据以推进定制治疗 (TRUST)
- 批准号:
10256676 - 财政年份:2020
- 资助金额:
$ 22.26万 - 项目类别:
Transforming Real-world evidence with Unstructured and Structured data to advance Tailored therapy (TRUST)
使用非结构化和结构化数据转换现实世界证据以推进定制治疗 (TRUST)
- 批准号:
10180783 - 财政年份:2020
- 资助金额:
$ 22.26万 - 项目类别:
Leveraging advanced clinical phenotyping to enhance problem lists and support value-based healthcare
利用先进的临床表型来增强问题清单并支持基于价值的医疗保健
- 批准号:
9762237 - 财政年份:2016
- 资助金额:
$ 22.26万 - 项目类别:
Subgroup Analytics and Advanced Semantic Technologies to Enable Personalized Medicine
亚组分析和先进语义技术可实现个性化医疗
- 批准号:
8979535 - 财政年份:2015
- 资助金额:
$ 22.26万 - 项目类别:
Voice Based, Workflow Enhancing, Primary Care Medical Data Input System
基于语音、增强工作流程的初级保健医疗数据输入系统
- 批准号:
7924457 - 财政年份:2010
- 资助金额:
$ 22.26万 - 项目类别:
相似海外基金
Examining the Function of a Novel Protein in the Cardiac Junctional Membrane Complex
检查心脏连接膜复合体中新型蛋白质的功能
- 批准号:
10749672 - 财政年份:2024
- 资助金额:
$ 22.26万 - 项目类别:
Targeting soluble guanylate cyclase as a novel strategy to treat and prevent cardiac arrhythmias: efficacy and mechanisms
靶向可溶性鸟苷酸环化酶作为治疗和预防心律失常的新策略:功效和机制
- 批准号:
MR/Y003594/1 - 财政年份:2024
- 资助金额:
$ 22.26万 - 项目类别:
Research Grant
Towards widespread use of cardiac MRI using new affordable low magnetic field (0.55T) MRI scanner and AI
使用新型经济实惠的低磁场 (0.55T) MRI 扫描仪和 AI 实现心脏 MRI 的广泛使用
- 批准号:
2904562 - 财政年份:2024
- 资助金额:
$ 22.26万 - 项目类别:
Studentship
Using Novel Machine Learning Methods to Personalize Strategies for Prevention of Persistent AKI after Cardiac Surgery
使用新颖的机器学习方法制定个性化策略,预防心脏手术后持续性 AKI
- 批准号:
10979324 - 财政年份:2024
- 资助金额:
$ 22.26万 - 项目类别:
Investigating the mechanosensitive interplays between genetic control and self-organisation during the emergence of cardiac tissue curvature
研究心脏组织曲率出现过程中遗传控制和自组织之间的机械敏感性相互作用
- 批准号:
BB/Y00566X/1 - 财政年份:2024
- 资助金额:
$ 22.26万 - 项目类别:
Research Grant
Novel minimally-invasive in-situ 3D bioprinting platform for cardiac regeneration
用于心脏再生的新型微创原位3D生物打印平台
- 批准号:
EP/X027287/2 - 财政年份:2024
- 资助金额:
$ 22.26万 - 项目类别:
Fellowship
Prevention of Infections in Cardiac Surgery (PICS): a cluster-randomized factorial cross-over trial
心脏手术中感染的预防 (PICS):整群随机因子交叉试验
- 批准号:
498291 - 财政年份:2023
- 资助金额:
$ 22.26万 - 项目类别:
Operating Grants
Postoperative reduction in thrombin generation in cardiac surgery: pathogenesis and evaluation
心脏手术术后凝血酶生成减少:发病机制和评估
- 批准号:
23H03001 - 财政年份:2023
- 资助金额:
$ 22.26万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of a novel therapy for cardiac fibrosis using a cell removal vaccine
使用细胞去除疫苗开发治疗心脏纤维化的新疗法
- 批准号:
23K07504 - 财政年份:2023
- 资助金额:
$ 22.26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Aging of cardiac fibroblasts and heart failure: novel heart failure treatment through regeneration and transplantation of cardiac fibroblasts
心脏成纤维细胞的衰老和心力衰竭:通过心脏成纤维细胞的再生和移植治疗心力衰竭
- 批准号:
23K07526 - 财政年份:2023
- 资助金额:
$ 22.26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




