Enabling value-based healthcare through automating risk assessment for episode-based care
通过对基于事件的护理进行自动化风险评估,实现基于价值的医疗保健
基本信息
- 批准号:9464424
- 负责人:
- 金额:$ 22.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:AttentionCardiacCaringChronicClinicClinicalClinical DataComplicationContinuity of Patient CareContractsCost ControlDataData CollectionData QualityData SetDiagnosisFoundationsGoalsHealth Care ReformHealthcareHealthcare SystemsHome environmentHospitalsHourInsuranceLabelMeasurementMeasuresMedicareModelingNatural Language ProcessingOntologyOutpatientsPatient-Focused OutcomesPatientsPhasePhenotypeProceduresProviderReplacement ArthroplastyResearchResourcesRiskRisk AdjustmentRisk AssessmentRunningSmall Business Innovation Research GrantTechnologyTestingTextTimeUnited StatesWorkbasecare episodeclinical careclinically relevantconcept mappingcostfeedingfinancial incentiveimprovedinterestoncologypaymentphysical therapistprogramssocialsuccessvector
项目摘要
Project Summary
Value-based healthcare implementation relies on understanding risk. 1 Early models, such as Medicare
Advantage, use annual measures of risk under a risk adjustment factor (RAF) to offer financial incentive
to payers and hospitals to work together. 2 More advanced models, such as bundled payments, target
the periods of greatest quality variability, specifically episodes of care such as joint replacement,
oncology diagnosis, and cardiac procedures. In these episodes, many types of providers, from hospitals
to outpatient physical therapists, need to work together to reduce rates of complication and
readmission. Risk levels are used to adjust payment for payer and providers and to determine which
patients require additional resources in the hospital, clinic, or home.
Unfortunately, existing risk models lack key features needed for episode-based care, which requires
both financial alignment and accurate and immediate information to adjust clinical resources for a given
case. 3 4 A better model would include all conditions relevant to an episode rather than just chronic
conditions, addition of social determinants, and an automated approach to retrieve the information in
hours rather than months. Thus, this Small Business Innovation Research (SBIR) Phase I program
includes the following Specific Aims:
1. Create the phenotyping components required to define an accurate and comprehensive model
of episode-based risk, including: (i) extract clinical and social features from clinical data using
natural language processing (NLP), (ii) map concepts including social features to an ontology
that will support normalized data use, (iii) build a feature vector for each record that can be
used to feed a risk model that accounts for relevant clinical and social risk
2. Validate the phenotyping components using de-identified longitudinal clinical data for 10,000
patients
In this research program, Phase I will tackle the most difficult challenges, including leveraging narrative
text to recognize time-labeled social and clinical features influencing an episode of care. Success criteria
will be accurate recognition of key underlying features that have not been available in risk models to
date. Phase II will build upon the validated technology to create an episode-based risk model run on
narrative and discrete clinical data and tested against actual patient outcomes. Success criteria will be a
validated episode-based risk model to support value-based contracting and value-based clinical care.
项目摘要
基于价值的医疗保健实施依赖于理解风险。 1个早期型号,例如Medicare
优势,使用风险调整因子(RAF)下的年度风险度量来提供经济激励
给付款人和医院一起工作。 2种更高级的模型,例如捆绑付款,目标
质量可变性最大的时期,特别是关节置换等护理时期,
肿瘤学诊断和心脏手术。在这些情节中,医院的许多类型的提供者
要门诊物理治疗师,需要共同努力,以降低并发症的速度和
再入院。风险水平用于调整付款人和提供商的付款,并确定哪个
患者需要在医院,诊所或家庭中额外的资源。
不幸的是,现有风险模型缺乏基于情节的护理所需的关键功能,这需要
财务一致性以及准确而直接的信息,以调整给定的临床资源
案件。 3 4更好的模型将包括与情节相关的所有条件,而不仅仅是慢性
条件,添加社会决定因素以及一种自动化方法来检索信息
小时而不是几个月。因此,这项小型企业创新研究(SBIR)I阶段计划
包括以下特定目标:
1。创建定义准确和全面模型所需的表型组件
基于情节的风险,包括:(i)从临床数据中提取临床和社会特征
自然语言处理(NLP),(ii)将包括社会特征在本体论的地图概念
这将支持标准化的数据使用,(iii)为每个记录构建一个功能向量,可以是
用于喂养相关临床和社会风险的风险模型
2。使用未识别的纵向临床数据验证表型成分的10,000
患者
在该研究计划中,第一阶段将应对最困难的挑战,包括利用叙事
文本以识别有时间标记的社会和临床特征,影响了一集的护理情节。成功标准
将准确地识别在风险模型中尚未可用的关键基础功能
日期。第二阶段将建立在经过验证的技术的基础上,以创建基于情节的风险模型。
叙事和离散的临床数据,并针对实际患者预后进行了测试。成功标准将是
验证了基于情节的风险模型,以支持基于价值的合同和基于价值的临床护理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Jay Riskin其他文献
Daniel Jay Riskin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Jay Riskin', 18)}}的其他基金
Transforming Real-world evidence with Unstructured and Structured data to advance Tailored therapy (TRUST)
使用非结构化和结构化数据转换现实世界证据以推进定制治疗 (TRUST)
- 批准号:
10450726 - 财政年份:2020
- 资助金额:
$ 22.26万 - 项目类别:
Transforming Real-world evidence with Unstructured and Structured data to advance Tailored therapy (TRUST)
使用非结构化和结构化数据转换现实世界证据以推进定制治疗 (TRUST)
- 批准号:
10256676 - 财政年份:2020
- 资助金额:
$ 22.26万 - 项目类别:
Transforming Real-world evidence with Unstructured and Structured data to advance Tailored therapy (TRUST)
使用非结构化和结构化数据转换现实世界证据以推进定制治疗 (TRUST)
- 批准号:
10180783 - 财政年份:2020
- 资助金额:
$ 22.26万 - 项目类别:
Leveraging advanced clinical phenotyping to enhance problem lists and support value-based healthcare
利用先进的临床表型来增强问题清单并支持基于价值的医疗保健
- 批准号:
9762237 - 财政年份:2016
- 资助金额:
$ 22.26万 - 项目类别:
Subgroup Analytics and Advanced Semantic Technologies to Enable Personalized Medicine
亚组分析和先进语义技术可实现个性化医疗
- 批准号:
8979535 - 财政年份:2015
- 资助金额:
$ 22.26万 - 项目类别:
Voice Based, Workflow Enhancing, Primary Care Medical Data Input System
基于语音、增强工作流程的初级保健医疗数据输入系统
- 批准号:
7924457 - 财政年份:2010
- 资助金额:
$ 22.26万 - 项目类别:
相似国自然基金
化学小分子激活YAP诱导染色质可塑性促进心脏祖细胞重编程的表观遗传机制研究
- 批准号:82304478
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
心肌源性微囊泡AEP调节巨噬细胞极化对放射性心脏损伤的保护机制研究
- 批准号:82373514
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
ROS响应的化橘红融合纳米囊泡抑制心脏移植排斥的作用以及机制研究
- 批准号:82302003
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于线粒体能量代谢及微循环障碍的多参数MR诊断和预测心脏移植物血管病研究
- 批准号:82371903
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
应用分子影像方法探究帕金森病模型鼠心脏自主神经损伤的时间窗及心脏神经受体表达的分析
- 批准号:82360352
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Identifying EEG Markers of Altered Interoceptive Processing in Chronic Pain
识别慢性疼痛中内感受处理改变的脑电图标记
- 批准号:
10606187 - 财政年份:2023
- 资助金额:
$ 22.26万 - 项目类别:
Sex Differences in Psychosocial and Neurocognitive Outcomes in Adults with Moderate to Complex Congenital Heart Disease
患有中度至复杂先天性心脏病的成人心理社会和神经认知结果的性别差异
- 批准号:
10825104 - 财政年份:2023
- 资助金额:
$ 22.26万 - 项目类别:
PREcision Care In Cardiac ArrEst - ICECAP (PRECICECAP)
心脏骤停的精准护理 - ICECAP (PRECICECAP)
- 批准号:
10842647 - 财政年份:2023
- 资助金额:
$ 22.26万 - 项目类别:
Identifying Safe Stimulant Prescribing Practices to Protect Patients, Inform Key Program Initiatives, and Assist Providers
确定安全的兴奋剂处方实践以保护患者、为关键计划举措提供信息并协助提供者
- 批准号:
10534426 - 财政年份:2023
- 资助金额:
$ 22.26万 - 项目类别:
Adherence to Clinical Practice Guidelines for Screening and Management of Pediatric High Blood Pressure within a Massachusetts Safety-Net Health Care System
遵守马萨诸塞州安全网医疗保健系统内儿童高血压筛查和管理的临床实践指南
- 批准号:
10464844 - 财政年份:2022
- 资助金额:
$ 22.26万 - 项目类别: