CAREER: ABI-Innovation: CiliaWeb: Integrated platform for foundational and reproducible ciliary beat pattern analysis
职业:ABI-创新:CiliaWeb:用于基础和可重复纤毛跳动模式分析的集成平台
基本信息
- 批准号:1845915
- 负责人:
- 金额:$ 96.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Cilia are microscopic hairs that protrude from nearly every cell in the human body, including those in the throat, nose, lungs, kidneys, and brain. Cilia move in regular, rhythmic patterns in order to transport materials outside the cells. These movements of the cilia are important at every stage of life, from early embryonic development to reproduction and regular healthy maintenance; in short, healthy cilia are a critical component of overall health of an organism. Consequently, when cilia move abnormally, numerous debilitating conditions can result, encompassing disorders ranging from developmental shortcomings in the embryo to adult pathologies such as infertility and lung scarring. Therefore, the key question this proposal seeks to answer is: by observing the motion of cilia, is it possible to predict whether the morphology or behavior is abnormal, and if so, whether that particular abnormality is associated with a specific condition? The answer to this question has implications not only in human health, but also in building fundamental knowledge of the biology around how cilia are constructed and maintained. To address this question, we are building the CiliaWeb platform, which will include new algorithms for analyzing videos of cilia and shedding light on the statistics of ciliary motion. The algorithms will take advantage of the regular back-and-forth movements of cilia and be built to incorporate crowdsourced feedback from users to improve the models of ciliary motion. As its name implies, CiliaWeb will be internet-accessible for researchers and clinicians to upload datasets, conduct analyses, and visualize results. The ultimate goal of CiliaWeb is to provide a standardized platform for ciliary motion analysis that can be reproduced and validated by others, encouraging collaboration and catalyzing new discoveries in fundamental cilia research as well as connections to health and well-being.Cilia are microscopic hairs that protrude from eukaryotic cells and are critical components in development, reproduction, and homeostasis. Cilia beat in synchronous waves to generate fluid flow and clear particulates; disruptions of these motions result in a spectrum of pathologies. However, no quantitative, reproducible, and validated method exists for assessing ciliary motion from high-speed videomicroscopy. Without such a method, beat pattern phenotype cannot be used to conclusively advance our understanding of the fundamental biology of cilia (construction and maintenance), nor the precise role of beat pattern in organismal health (examples being signaling, development, fertility). This proposal aims to create the CiliaWeb framework to establish an objective measure of motion phenotypes, enable new lines of inquiry into biophysical mechanisms of ciliary motion and discover the biological roles of specific motion phenotypes, as well as make possible cross-institutional collaborations, large-scale genotype-phenotype association studies, and longitudinal biomedical studies. The CiliaWeb platform will incorporate tightly-integrated and openly-available tools for processing ciliary motion, including: a novel unsupervised dynamic texture segmentation algorithm for automatically identifying cilia in high-speed digital videos; a hierarchical encoding scheme for quantifying ciliary motion at multiple spatiotemporal scales; a crowdsourcing module to solicit targeted feedback on the learned motion patterns that are fully interactive and automated. CiliaWeb will contribute methodological advancements in computational bioimaging and establish baseline data through the release of open source code and validated datasets, in addition to hands-on outreach and training for students in the form of workshops and hackathons. Project updates: https://quinngroup.github.ioThis award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
纤毛是一种微小的毛发,几乎从人体的每一个细胞中伸出,包括喉咙,鼻子,肺,肾脏和大脑中的细胞。纤毛以有规律、有节奏的方式移动,以便将物质运输到细胞外。纤毛的这些运动在生命的每个阶段都很重要,从早期胚胎发育到生殖和定期健康维护;简而言之,健康的纤毛是生物体整体健康的关键组成部分。因此,当纤毛运动异常时,可能会导致许多使人衰弱的疾病,包括从胚胎发育缺陷到成年病理学(如不孕症和肺瘢痕)的疾病。因此,这项建议试图回答的关键问题是:通过观察纤毛的运动,是否有可能预测形态或行为是否异常,如果是这样,这种特定的异常是否与特定的条件有关?这个问题的答案不仅对人类健康有影响,而且对建立关于纤毛如何构建和维持的生物学基础知识也有影响。为了解决这个问题,我们正在构建CiliaWeb平台,该平台将包括用于分析纤毛视频和揭示纤毛运动统计数据的新算法。这些算法将利用纤毛的定期来回运动,并将来自用户的众包反馈纳入其中,以改进纤毛运动模型。顾名思义,CiliaWeb将可供研究人员和临床医生通过互联网访问,以上传数据集,进行分析和可视化结果。CiliaWeb的最终目标是为纤毛运动分析提供一个标准化的平台,可以被其他人复制和验证,鼓励合作,促进基础纤毛研究的新发现以及与健康和福祉的联系。纤毛是从真核细胞中伸出的微观毛发,是发育,繁殖和稳态的关键组成部分。纤毛在同步波中跳动以产生流体流动和清除颗粒;这些运动的中断导致一系列病理。然而,没有定量的,可重复的,和验证的方法来评估睫状体运动的高速视频显微镜。如果没有这样的方法,节拍模式表型就不能用于最终推进我们对纤毛基本生物学(构建和维护)的理解,也不能用于节拍模式在生物健康中的确切作用(例如信号传导,发育,生育)。该提案旨在创建CiliaWeb框架,以建立运动表型的客观测量,使新的调查线进入纤毛运动的生物物理机制,并发现特定运动表型的生物学作用,以及使跨机构合作,大规模基因型-表型关联研究和纵向生物医学研究成为可能。CiliaWeb平台将采用紧密集成和开放式的工具来处理纤毛运动,包括:一种新型的无监督动态纹理分割算法,用于自动识别高速数字视频中的纤毛;一种分层编码方案,用于在多个时空尺度上量化纤毛运动;一个众包模块,用于征求关于完全交互和自动化的学习运动模式的有针对性的反馈。CiliaWeb将通过发布开源代码和经验证的数据集,以及以研讨会和黑客马拉松的形式为学生提供实践推广和培训,为计算生物成像的方法学进步做出贡献,并建立基线数据。项目更新:https://quinngroup.github.ioThis奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Variational Autoencoders For Semi-Supervised Deep Metric Learning
- DOI:10.25080/majora-212e5952-022
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Nathan Safir;Meekail Zain;C. Godwin;Eric L. Miller;Bella Humphrey;Shannon Quinn
- 通讯作者:Nathan Safir;Meekail Zain;C. Godwin;Eric L. Miller;Bella Humphrey;Shannon Quinn
Incorporating Task-Agnostic Information in Task-Based Active Learning Using a Variational Autoencoder
- DOI:10.25080/majora-212e5952-011
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:C. Godwin;Meekail Zain;Nathan Safir;Bella Humphrey;Shannon Quinn
- 通讯作者:C. Godwin;Meekail Zain;Nathan Safir;Bella Humphrey;Shannon Quinn
Towards an Unsupervised Spatiotemporal Representation of Cilia Video Using A Modular Generative Pipeline
使用模块化生成管道实现纤毛视频的无监督时空表示
- DOI:10.25080/majora-342d178e-017
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Zain, Meekail;Rao, Sonia;Safir, Nathan;Wyner, Quinn;Humphrey, Isabella;Eldridge, Alex;Li, Chenxiao;AlAila, BahaaEddin;Quinn, Shannon
- 通讯作者:Quinn, Shannon
Low Level Feature Extraction for Cilia Segmentation
- DOI:10.25080/majora-212e5952-026
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Meekail Zain;E. Miller;Shannon Quinn;Cecilia W. Lo
- 通讯作者:Meekail Zain;E. Miller;Shannon Quinn;Cecilia W. Lo
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shannon Quinn其他文献
Temporal Word Embeddings Analysis for Disease Prevention
用于疾病预防的时态词嵌入分析
- DOI:
10.25080/majora-212e5952-01a - 发表时间:
2022 - 期刊:
- 影响因子:5.2
- 作者:
N. Jacobi;Ivan Mo;Albert You;Krishi Kishore;Zane Page;Shannon Quinn;Tim Heckman - 通讯作者:
Tim Heckman
A Novel Pipeline for Cell Instance Segmentation, Tracking and Motility Classification of Toxoplasma Gondii in 3D Space
3D 空间中弓形虫细胞实例分割、跟踪和运动分类的新流程
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Seyed Vaezi;Gianni Orlando;Mojtaba Sedigh Fazli;G. Ward;Silvia N J Moreno;Shannon Quinn - 通讯作者:
Shannon Quinn
Shannon Quinn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shannon Quinn', 18)}}的其他基金
IGE: Toward an interdisciplinary blueprint for Open Science Graduate Education
IGE:迈向开放科学研究研究生教育的跨学科蓝图
- 批准号:
1955049 - 财政年份:2020
- 资助金额:
$ 96.41万 - 项目类别:
Standard Grant
相似国自然基金
ABI3BP通过优化糖代谢改善阿尔茨海默症的研究
- 批准号:JCZRQN202500293
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
ABI4的氧-糖基化修饰负调控ABA信号的
分子机理研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
蛋白磷酸酶PP2C34和PP2C75去磷酸化ABI1激活ABA信号途径的作用机理研究
- 批准号:32370331
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
ABI3BP参与内皮祖细胞功能调控在血管衰老中的作用及机制
- 批准号:n/a
- 批准年份:2022
- 资助金额:0.0 万元
- 项目类别:省市级项目
ABI3BP 差异化调节中膜 SMCs 和血管外膜 Scal+祖细胞功能影响内膜新生的作用及机制
- 批准号:
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
ABI3BP差异化调节中膜SMCs和血管外膜Sca-1+祖细胞功能影响内膜新生的作用及机制
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
耐干苔藓脱落酸信号关键因子ABI3调控机理研究
- 批准号:31900270
- 批准年份:2019
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
自噬蛋白ATG8I与ABI5转录因子相互作用调控ABA信号转导及种子萌发的分子机理
- 批准号:31870258
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
SRRM4介导Abi1可变剪接调控平滑肌细胞表型转化在动脉粥样硬化中的关键作用和机制研究
- 批准号:81800415
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
拟南芥转录因子ABI5和MYB30共调控ABA受体PYL12参与种子萌发的机制研究
- 批准号:31872656
- 批准年份:2018
- 资助金额:58.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: ABI Innovation: FuTRES, an Ontology-Based Functional Trait Resource for Paleo- and Neo-biologists
合作研究:ABI 创新:FuTRES,为古生物学家和新生物学家提供的基于本体的功能性状资源
- 批准号:
2201182 - 财政年份:2021
- 资助金额:
$ 96.41万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Towards Computational Exploration of Large-Scale Neuro-Morphological Datasets
合作研究:ABI 创新:大规模神经形态数据集的计算探索
- 批准号:
2028361 - 财政年份:2020
- 资助金额:
$ 96.41万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Enabling machine-actionable semantics for comparative analyses of trait evolution
合作研究:ABI 创新:启用机器可操作的语义以进行特征进化的比较分析
- 批准号:
2048296 - 财政年份:2020
- 资助金额:
$ 96.41万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Biofilm Resource and Information Database (BRaID): A Tool to Fuse Diverse Biofilm Data Types
合作研究:ABI 创新:生物膜资源和信息数据库 (BRaID):融合多种生物膜数据类型的工具
- 批准号:
2027203 - 财政年份:2019
- 资助金额:
$ 96.41万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Quantifying biogeographic history: a novel model-based approach to integrating data from genes, fossils, specimens, and environments
合作研究:ABI 创新:量化生物地理历史:一种基于模型的新颖方法来整合来自基因、化石、标本和环境的数据
- 批准号:
1759729 - 财政年份:2018
- 资助金额:
$ 96.41万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Quantifying biogeographic history: a novel model -based approach to integrating data from genes, fossils, specimens, and environments
合作研究:ABI 创新:量化生物地理历史:一种基于模型的新颖方法来整合来自基因、化石、标本和环境的数据
- 批准号:
1759708 - 财政年份:2018
- 资助金额:
$ 96.41万 - 项目类别:
Standard Grant
ABI INNOVATION: Physical Bioinformatics Tools for Measuring Translation Rates from Next-Generation Sequencing Data
ABI 创新:用于测量下一代测序数据翻译率的物理生物信息学工具
- 批准号:
1759860 - 财政年份:2018
- 资助金额:
$ 96.41万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
- 批准号:
1759836 - 财政年份:2018
- 资助金额:
$ 96.41万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Automated Prioritization and Design of Experiments to Validate and Improve Mathematical Models of Molecular Regulatory Systems
合作研究:ABI 创新:自动优先排序和实验设计,以验证和改进分子调控系统的数学模型
- 批准号:
1759858 - 财政年份:2018
- 资助金额:
$ 96.41万 - 项目类别:
Standard Grant
ABI Innovation: ProteoCarta: a community-scale resource for multi-species proteomics big data
ABI Innovation:ProteoCarta:多物种蛋白质组大数据的社区规模资源
- 批准号:
1759980 - 财政年份:2018
- 资助金额:
$ 96.41万 - 项目类别:
Standard Grant