BIGDATA: F: Towards Automating Data Analysis: Interpretable, Interactive, and Scalable Learning via Discrete Probability

BIGDATA:F:迈向自动化数据分析:通过离散概率进行可解释、交互式和可扩展的学习

基本信息

  • 批准号:
    1741341
  • 负责人:
  • 金额:
    $ 102.44万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-10-01 至 2022-09-30
  • 项目状态:
    已结题

项目摘要

As machine learning (ML) permeates all areas of science and technology, demands in diverse data domains, inference questions, resource limitations and reliability fuel several new conceptual and algorithmic challenges. Examples of current shortcomings that limit the full use of machine learning include suboptimal use of data and algorithms; painstaking hand-tuning and model search; validation of results and difficulties in generalization; limited interactivity with humans; encoding of domain knowledge; and lack of interpretability, among others. Progress on these questions has the potential to impact the successful adoption and use of machine learning in a broad range of fields. With the above motivation, the goal of this project is to create a novel suite of models and algorithms for analyzing complex datasets, with a particular focus on the following three factors crucial for next-generation machine learning: (1) interpretability; (2) interactivity; and (3) automated learning. The overarching technical concept underlying this proposal is the concept of negative dependence in discrete probability. This project lays theoretical foundations for a new set of tools grounded in this concept. Besides practical impacts, the methods to be studied in the project motivate new theoretical questions, and will help increase interest in the underlying mathematics.The practical impact of the proposed work has the potential to benefit society on multiple fronts. Via collaborations, the PIs will evaluate the developed methods in healthcare (seeking to ultimately impact patient care and well-being), systems biology (to help with research on cancer and diabetes, among others), and materials science (to help discover safer, functional materials more efficiently). The project will also directly have educational impact: training of graduate students, providing material for data science courses at all levels, and outreach to the community via general talks as well as focused lectures at conferences and workshops, including workshops and events targeted at women in Data Science. Technically, the PIs will develop: (1) New tools, models, and algorithms for interactive data analysis, especially for experimental design, information collection, interpretable machine learning, hypothesis testing, performance validation, and architecture learning; (2) Theoretical analysis, such as convergence and complexity (statistical and computational); and (3) Open-source implementations of all key algorithms and frameworks.
随着机器学习(ML)渗透到科学和技术的各个领域,对不同数据领域的需求,推理问题,资源限制和可靠性引发了一些新的概念和算法挑战。目前限制机器学习充分使用的缺点包括数据和算法的次优使用;艰苦的手工调整和模型搜索;结果验证和推广困难;与人类的交互有限;领域知识的编码;以及缺乏可解释性等。这些问题的进展有可能影响机器学习在广泛领域的成功采用和使用。基于上述动机,该项目的目标是创建一套用于分析复杂数据集的新模型和算法,特别关注下一代机器学习的三个关键因素:(1)可解释性;(2)交互性;(3)自动学习。该提议的总体技术概念是离散概率中的负相关概念。该项目为基于这一概念的一套新工具奠定了理论基础。除了实际影响外,项目中要研究的方法还激发了新的理论问题,并将有助于提高对基础数学的兴趣。拟议工作的实际影响有可能在多个方面造福社会。通过合作,PI将评估医疗保健(寻求最终影响患者护理和福祉),系统生物学(帮助癌症和糖尿病等研究)和材料科学(帮助更有效地发现更安全的功能材料)中开发的方法。该项目还将直接产生教育影响:培训研究生,为各级数据科学课程提供材料,并通过一般性会谈以及会议和研讨会上的重点讲座(包括针对数据科学女性的研讨会和活动)与社区进行外联。从技术上讲,PI将开发:(1)用于交互式数据分析的新工具,模型和算法,特别是用于实验设计,信息收集,可解释的机器学习,假设检验,性能验证和架构学习;(2)理论分析,如收敛性和复杂性(统计和计算);以及(3)所有关键算法和框架的开源实现。

项目成果

期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Provably Efficient Algorithms for Multi-Objective Competitive RL
可证明有效的多目标竞争强化学习算法
Discrete Sampling using Semigradient-based Product Mixtures
使用基于半梯度的产品混合物进行离散采样
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gotovos, Alkis;Hassani, Hamed;Krause, Andreas;Jegelka, Stefanie
  • 通讯作者:
    Jegelka, Stefanie
Measuring Generalization with Optimal Transport
  • DOI:
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ching-Yao Chuang;Youssef Mroueh;K. Greenewald;A. Torralba;S. Jegelka
  • 通讯作者:
    Ching-Yao Chuang;Youssef Mroueh;K. Greenewald;A. Torralba;S. Jegelka
Max-Margin Contrastive Learning
  • DOI:
    10.1609/aaai.v36i8.20796
  • 发表时间:
    2021-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anshul B. Shah;S. Sra;Ramalingam Chellappa;A. Cherian
  • 通讯作者:
    Anshul B. Shah;S. Sra;Ramalingam Chellappa;A. Cherian
Debiased Contrastive Learning
  • DOI:
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ching-Yao Chuang;Joshua Robinson;Yen-Chen Lin;A. Torralba;S. Jegelka
  • 通讯作者:
    Ching-Yao Chuang;Joshua Robinson;Yen-Chen Lin;A. Torralba;S. Jegelka
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Suvrit Sra其他文献

Suvrit Sra的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Suvrit Sra', 18)}}的其他基金

CAREER: Modern nonconvex optimization for machine learning: foundations of geometric and scalable techniques
职业:机器学习的现代非凸优化:几何和可扩展技术的基础
  • 批准号:
    1846088
  • 财政年份:
    2019
  • 资助金额:
    $ 102.44万
  • 项目类别:
    Continuing Grant
TRIPODS+X:RES:Collaborative Research: Learning with Expert-In-The-Loop for Multimodal Weakly Labeled Data and an Application to Massive Scale Medical Imaging
TRIPODS X:RES:协作研究:与专家在环学习多模态弱标记数据及其在大规模医学成像中的应用
  • 批准号:
    1839258
  • 财政年份:
    2018
  • 资助金额:
    $ 102.44万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Adaptive Deep Learning Systems Towards Edge Intelligence
职业:迈向边缘智能的自适应深度学习系统
  • 批准号:
    2338512
  • 财政年份:
    2024
  • 资助金额:
    $ 102.44万
  • 项目类别:
    Continuing Grant
CAREER: Towards highly efficient UV emitters with lattice engineered substrates
事业:采用晶格工程基板实现高效紫外线发射器
  • 批准号:
    2338683
  • 财政年份:
    2024
  • 资助金额:
    $ 102.44万
  • 项目类别:
    Continuing Grant
Postdoctoral Fellowship: STEMEdIPRF: Towards a Diverse Professoriate: Experiences that Inform Underrepresented Scholars' Perceptions of Value Alignment and Career Decisions
博士后奖学金:STEMEdIPRF:走向多元化的教授职称:为代表性不足的学者对价值调整和职业决策的看法提供信息的经验
  • 批准号:
    2327411
  • 财政年份:
    2024
  • 资助金额:
    $ 102.44万
  • 项目类别:
    Standard Grant
Collaborative Research: Maritime to Inland Transitions Towards ENvironments for Convection Initiation (MITTEN CI)
合作研究:海洋到内陆向对流引发环境的转变(MITTEN CI)
  • 批准号:
    2349935
  • 财政年份:
    2024
  • 资助金额:
    $ 102.44万
  • 项目类别:
    Continuing Grant
Collaborative Research: Maritime to Inland Transitions Towards ENvironments for Convection Initiation (MITTEN CI)
合作研究:海洋到内陆向对流引发环境的转变(MITTEN CI)
  • 批准号:
    2349934
  • 财政年份:
    2024
  • 资助金额:
    $ 102.44万
  • 项目类别:
    Continuing Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
  • 批准号:
    2400195
  • 财政年份:
    2024
  • 资助金额:
    $ 102.44万
  • 项目类别:
    Standard Grant
ASCENT: Heterogeneously Integrated and AI-Empowered Millimeter-Wave Wide-Bandgap Transmitter Array towards Energy- and Spectrum-Efficient Next-G Communications
ASCENT:异构集成和人工智能支持的毫米波宽带隙发射机阵列,实现节能和频谱高效的下一代通信
  • 批准号:
    2328281
  • 财政年份:
    2024
  • 资助金额:
    $ 102.44万
  • 项目类别:
    Standard Grant
CAREER: Towards a comprehensive model of seismicity throughout the seismic cycle
职业:建立整个地震周期地震活动的综合模型
  • 批准号:
    2339556
  • 财政年份:
    2024
  • 资助金额:
    $ 102.44万
  • 项目类别:
    Continuing Grant
CAREER: Towards Safety-Critical Real-Time Systems with Learning Components
职业:迈向具有学习组件的安全关键实时系统
  • 批准号:
    2340171
  • 财政年份:
    2024
  • 资助金额:
    $ 102.44万
  • 项目类别:
    Continuing Grant
Sexual offence interviewing: Towards victim-survivor well-being and justice
性犯罪面谈:为了受害者-幸存者的福祉和正义
  • 批准号:
    DE240100109
  • 财政年份:
    2024
  • 资助金额:
    $ 102.44万
  • 项目类别:
    Discovery Early Career Researcher Award
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了