CAREER: Towards Understanding and Modeling Turbulent Reacting Particle-Laden Flows
职业:理解和模拟湍流反应的粒子负载流
基本信息
- 批准号:1846054
- 负责人:
- 金额:$ 50.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Multiphase reactors are central to nearly all energy processes. Examples include the production of biofuels, post-combustion carbon capture, and particle-based solar receivers. In addition, many natural processes involve multiphase heat and mass transfer in a turbulent flow. For example, ocean spray ejected from breaking waves affects air-sea fluxes that influence the intensity of hurricanes. However, there are many challenges associated with modeling how turbulent mixing interacts with the reaction kinetics, mass transfer, and heat transfer across length and time scales. Because of these challenges, most existing models are based on empirical correlations that do a poor job at predicting measurements in applications of interest. This project aims to improve our fundamental understanding of these complex multiphase flows and enable predictive models that work across varying regimes. The Principal Investigator will use his expertise in multiphase flows and turbulence modeling to accomplish three goals. He will 1) establish a connection between two-phase flow dynamics and rates of heat and mass transfer, 2) use recent advances in data science and machine learning to link physical processes across scales, and 3) create a museum exhibit that highlights the art and science of these complex flows and its role in the energy sector.While there has been significant progress characterizing hydrodynamic interactions in particle-laden flows, much less is known about interphase heat and mass transfer. State-of-the-art codes used in industry and academia rely on simplistic models for average reaction rates as well as heat and mass transfer coefficients that are known to vary by orders of magnitude across two-phase flow regimes, resulting in enormous predictive uncertainty. The main limitation is the lack of meaningful data that describe multiphase interactions from the level of individual particles to larger scales of interest. In this project, unique, high fidelity numerical simulations will isolate two-way coupling between the phases and establish a relationship between multiphase interactions and heat/mass transfer. The emergence of inverse modeling and machine learning has enabled new approaches to systemically inform models with such data, and will be used here to quantify and reduce model uncertainty. The combination of these efforts will result in a new paradigm in data-driven multiphase turbulence modeling. Results are anticipated to have far-reaching impact on energy and environmental applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
多相反应堆几乎是所有能源过程的核心。例子包括生产生物燃料、燃烧后碳捕获和基于颗粒的太阳能接收器。此外,许多自然过程涉及紊流中的多相传热和传质。例如,破碎的海浪喷出的海洋喷雾会影响影响飓风强度的海气通量。然而,在模拟湍流混合如何与反应动力学、传质和传热在长度和时间尺度上相互作用方面存在许多挑战。由于这些挑战,大多数现有模型都是基于经验相关性,在预测感兴趣的应用中的测量方面做得很差。该项目旨在提高我们对这些复杂多相流的基本理解,并使预测模型能够在不同的制度下工作。首席研究员将利用他在多相流和湍流建模方面的专业知识来完成三个目标。他将1)建立两相流动力学与传热传质速率之间的联系,2)利用数据科学和机器学习的最新进展将跨尺度的物理过程联系起来,3)创建一个博物馆展览,突出这些复杂流动的艺术和科学及其在能源领域的作用。虽然在载重颗粒流动中流体动力学相互作用的表征方面取得了重大进展,但对相间传热和传质的研究却知之甚少。工业和学术界使用的最先进的代码依赖于平均反应速率的简单模型,以及已知在两相流状态下以数量级变化的传热和传质系数,导致巨大的预测不确定性。主要的限制是缺乏有意义的数据来描述从单个粒子水平到更大尺度的多相相互作用。在这个项目中,独特的、高保真的数值模拟将隔离相之间的双向耦合,并建立多相相互作用和热/质传递之间的关系。逆建模和机器学习的出现为系统地利用这些数据为模型提供了新的方法,并将在这里用于量化和减少模型的不确定性。这些努力的结合将导致数据驱动的多相湍流建模的新范式。预计研究结果将对能源和环境应用产生深远影响。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the thermal entrance length of moderately dense gas-particle flows
中等密度气体-颗粒流的热入口长度
- DOI:10.1016/j.ijheatmasstransfer.2021.121985
- 发表时间:2022
- 期刊:
- 影响因子:5.2
- 作者:Beetham, S.;Lattanzi, A.;Capecelatro, J.
- 通讯作者:Capecelatro, J.
Multiphase Turbulence Modeling Using Sparse Regression and Gene Expression Programming
- DOI:10.1080/00295450.2023.2178251
- 发表时间:2021-06
- 期刊:
- 影响因子:1.5
- 作者:S. Beetham;Jesse Capecelatro
- 通讯作者:S. Beetham;Jesse Capecelatro
Formulating turbulence closures using sparse regression with embedded form invariance
- DOI:10.1103/physrevfluids.5.084611
- 发表时间:2020-08-28
- 期刊:
- 影响因子:2.7
- 作者:Beetham, S.;Capecelatro, J.
- 通讯作者:Capecelatro, J.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jesse Capecelatro其他文献
Gas-particle dynamics in high-speed flows: Insights from 18th-century cannon firings to particle-resolved simulations
高速流动中的气体粒子动力学:从 18 世纪大炮发射到粒子解析模拟的见解
- DOI:
10.1016/j.sctalk.2023.100213 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Jesse Capecelatro - 通讯作者:
Jesse Capecelatro
Recent developments in the computational simulation of dry powder inhalers
- DOI:
10.1016/j.addr.2022.114461 - 发表时间:
2022-09-01 - 期刊:
- 影响因子:17.600
- 作者:
Jesse Capecelatro;Worth Longest;Connor Boerman;Mostafa Sulaiman;Sankaran Sundaresan - 通讯作者:
Sankaran Sundaresan
Jesse Capecelatro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jesse Capecelatro', 18)}}的其他基金
Collaborative Research: Effect of Pulsatility on Expiratory Droplet-Laden Flows
合作研究:脉动对呼气液滴流量的影响
- 批准号:
2035489 - 财政年份:2021
- 资助金额:
$ 50.55万 - 项目类别:
Standard Grant
CDS&E: Collaborative Research: CDS&E: Advances in closure modeling for turbulent flows with finite-sized particles informed by massive simulations on heterogeneous architec
CDS
- 批准号:
1953190 - 财政年份:2020
- 资助金额:
$ 50.55万 - 项目类别:
Standard Grant
Collaborative Research: Bridging the Gap Between Particle-Scale Thermal Transport and Device-scale Predictions
合作研究:弥合粒子尺度热传输和设备尺度预测之间的差距
- 批准号:
1904742 - 财政年份:2019
- 资助金额:
$ 50.55万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Towards a Fundamental Understanding of Interface Strain-Driven Pseudomorphic Phase Transformation in Multilayered Nanocomposites
职业生涯:对多层纳米复合材料中界面应变驱动的赝晶相变有一个基本的了解
- 批准号:
2340965 - 财政年份:2024
- 资助金额:
$ 50.55万 - 项目类别:
Standard Grant
CAREER: Towards sensing and understanding fine-grained body postures in daily life using intelligent wearables with acoustic sensing
职业:利用具有声学传感功能的智能可穿戴设备来感知和理解日常生活中细粒度的身体姿势
- 批准号:
2239569 - 财政年份:2023
- 资助金额:
$ 50.55万 - 项目类别:
Continuing Grant
CAREER: Towards Provenance-Driven Understanding of Machine Learning Robustness
职业:对机器学习鲁棒性的起源驱动理解
- 批准号:
2238084 - 财政年份:2023
- 资助金额:
$ 50.55万 - 项目类别:
Continuing Grant
CAREER: Towards Polarimetric Visual Understanding
职业:走向偏振视觉理解
- 批准号:
2238141 - 财政年份:2023
- 资助金额:
$ 50.55万 - 项目类别:
Continuing Grant
CAREER: Towards Understanding and Control of Surface-Impinging Particle-Laden Flows
职业:理解和控制表面撞击的载有颗粒流
- 批准号:
2239393 - 财政年份:2022
- 资助金额:
$ 50.55万 - 项目类别:
Continuing Grant
CAREER: Atomistic Investigation of Phase Transition in Nanostructured Silicon--Towards Convergent Understanding with Mechanics-Informed Machine Learning Potential
职业:纳米结构硅相变的原子研究——通过力学信息机器学习潜力实现趋同理解
- 批准号:
2305529 - 财政年份:2022
- 资助金额:
$ 50.55万 - 项目类别:
Standard Grant
CAREER: Towards a Data-driven Understanding of Online Sentiment
职业:以数据驱动的方式理解网络情绪
- 批准号:
2046590 - 财政年份:2021
- 资助金额:
$ 50.55万 - 项目类别:
Continuing Grant
CAREER: Atomistic Investigation of Phase Transition in Nanostructured Silicon--Towards Convergent Understanding with Mechanics-Informed Machine Learning Potential
职业:纳米结构硅相变的原子研究——通过力学信息机器学习潜力实现趋同理解
- 批准号:
2046218 - 财政年份:2021
- 资助金额:
$ 50.55万 - 项目类别:
Standard Grant
CAREER: Towards Better Understanding, Robustness, and Efficiency of Deep Learning
职业:更好地理解深度学习、增强鲁棒性和效率
- 批准号:
2046710 - 财政年份:2021
- 资助金额:
$ 50.55万 - 项目类别:
Continuing Grant
CAREER: Understanding Multiscale Mass Transport in Organic Electrosynthesis: Towards a Sustainable Pathway to Nylon Precursors
职业:了解有机电合成中的多尺度传质:迈向尼龙前体的可持续途径
- 批准号:
1943972 - 财政年份:2020
- 资助金额:
$ 50.55万 - 项目类别:
Continuing Grant