CAREER: Towards Better Understanding, Robustness, and Efficiency of Deep Learning

职业:更好地理解深度学习、增强鲁棒性和效率

基本信息

  • 批准号:
    2046710
  • 负责人:
  • 金额:
    $ 59.71万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2026-09-30
  • 项目状态:
    未结题

项目摘要

Deep learning is a primary driving force behind many current intelligent decision-making systems and has achieved unprecedented success in various applications such as image processing, speech recognition, language translation, and game playing. However, the lack of adequate theoretical understanding is limiting the capacity to fully exploit the potential of deep learning in realistic environments, such as in security-sensitive or resource-constrained scenarios. This project aims to provide a thorough and systematic approach to understanding why practical deep-learning models succeed, under models of the data capturing the properties of real-world problems. This project will develop such an approach and employ the revealed principles in designing more robust and efficient deep-learning methods.The project will develop new theoretical models of properties of practical data leading to empirical success, and also provide frameworks for proving performance guarantees, including for learning in the presence of adversarial attacks or limited labeled data. It will also design new learning methods that are provably more robust and labeled-data efficient. This direction is still largely unexplored, despite significant recent research activities. The proposed theoretical and algorithmic solutions are possible through an interdisciplinary mix of tools from machine learning, statistics, and optimization. The proposed program is grounded in the investigator's prior work that includes both theoretical results and empirical validation. If successful, the proposed research can be transformational for modern intelligent systems by laying the foundations for further development. It will also help to solve new theoretical problems from practice that are not adequately addressed by current theory and will have lasting impacts on machine learning and optimization.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
深度学习是当前许多智能决策系统背后的主要驱动力,并在图像处理、语音识别、语言翻译和游戏等各种应用中取得了前所未有的成功。然而,缺乏足够的理论理解限制了在现实环境中充分利用深度学习潜力的能力,例如在安全敏感或资源受限的场景中。该项目旨在提供一个全面和系统的方法来理解为什么实际的深度学习模型在捕获现实世界问题属性的数据模型下成功。本项目将开发这样一种方法,并利用揭示的原则来设计更强大、更高效的深度学习方法。该项目将开发实际数据属性的新理论模型,从而获得经验上的成功,并提供证明性能保证的框架,包括在存在对抗性攻击或有限标记数据的情况下进行学习。它还将设计新的学习方法,这些方法被证明更健壮,标记数据更有效。尽管最近有重大的研究活动,但这个方向在很大程度上仍未被探索。通过机器学习、统计学和优化工具的跨学科组合,提出的理论和算法解决方案是可能的。提出的方案是在研究者的前期工作,包括理论结果和实证验证的基础上。如果成功,该研究将为现代智能系统的进一步发展奠定基础,从而具有变革性。它还将有助于解决当前理论没有充分解决的实践中的新理论问题,并将对机器学习和优化产生持久的影响。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Attentive Walk-Aggregating Graph Neural Networks
  • DOI:
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. F. Demirel;Shengchao Liu;Siddhant Garg;Zhenmei Shi;Yingyu Liang
  • 通讯作者:
    M. F. Demirel;Shengchao Liu;Siddhant Garg;Zhenmei Shi;Yingyu Liang
Stratified Adversarial Robustness with Rejection
  • DOI:
    10.48550/arxiv.2305.01139
  • 发表时间:
    2023-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jiefeng Chen;Jayaram Raghuram;Jihye Choi;Xi Wu;Yingyu Liang;S. Jha
  • 通讯作者:
    Jiefeng Chen;Jayaram Raghuram;Jihye Choi;Xi Wu;Yingyu Liang;S. Jha
The Trade-off between Universality and Label Efficiency of Representations from Contrastive Learning
  • DOI:
    10.48550/arxiv.2303.00106
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhenmei Shi;Jiefeng Chen;Kunyang Li;Jayaram Raghuram;Xi Wu;Yingyu Liang;S. Jha
  • 通讯作者:
    Zhenmei Shi;Jiefeng Chen;Kunyang Li;Jayaram Raghuram;Xi Wu;Yingyu Liang;S. Jha
When and How Does Known Class Help Discover Unknown Ones? Provable Understanding Through Spectral Analysis
  • DOI:
    10.48550/arxiv.2308.05017
  • 发表时间:
    2023-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yiyou Sun;Zhenmei Shi;Yingyu Liang;Yixuan Li
  • 通讯作者:
    Yiyou Sun;Zhenmei Shi;Yingyu Liang;Yixuan Li
Towards Evaluating the Robustness of Neural Networks Learned by Transduction
  • DOI:
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jiefeng Chen;Xi Wu;Yang Guo;Yingyu Liang;S. Jha
  • 通讯作者:
    Jiefeng Chen;Xi Wu;Yang Guo;Yingyu Liang;S. Jha
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yingyu Liang其他文献

A sonographic endometrial thickness <7 mm in women undergoing in vitro fertilization increases the risk of placenta accreta spectrum
接受体外受精的女性,超声检查显示子宫内膜厚度小于7毫米会增加胎盘植入谱系疾病的风险。
  • DOI:
    10.1016/j.ajog.2024.02.301
  • 发表时间:
    2024-11-01
  • 期刊:
  • 影响因子:
    8.400
  • 作者:
    Siying Lai;Lizi Zhang;Yang Luo;Zhongjia Gu;Zhenping Yan;Yuliang Zhang;Yingyu Liang;Minshan Huang;Jingying Liang;Shifeng Gu;Jingsi Chen;Lei Li;Dunjin Chen;Lili Du
  • 通讯作者:
    Lili Du
Generalizing Word Embeddings using Bag of Subwords
使用子词袋概括词嵌入
  • DOI:
    10.18653/v1/d18-1059
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Jinman Zhao;Sidharth Mudgal;Yingyu Liang
  • 通讯作者:
    Yingyu Liang
CS 760 Fall 2017: Example Final Project Topics
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yingyu Liang
  • 通讯作者:
    Yingyu Liang
Adaptive additional current-based line differential protection in the presence of converter- interfaced sources with four quadrant operation capability
  • DOI:
    10.1016/j.ijepes.2023.109116
  • 发表时间:
    2023-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Yingyu Liang;Yi Ren;Zhengzhen Fan;Xiaoyang Yang
  • 通讯作者:
    Xiaoyang Yang
N-Gram Graph, A Novel Molecule Representation
N-Gram 图,一种新颖的分子表示
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shengchao Liu;T. Chandereng;Yingyu Liang
  • 通讯作者:
    Yingyu Liang

Yingyu Liang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yingyu Liang', 18)}}的其他基金

Collaborative Research: RI: Small: Theoretical Foundations: TheAdvantage of Deep Learning over Traditional Shallow Learning Methods
合作研究:RI:小型:理论基础:深度学习相对于传统浅层学习方法的优势
  • 批准号:
    2008559
  • 财政年份:
    2020
  • 资助金额:
    $ 59.71万
  • 项目类别:
    Standard Grant

相似海外基金

Designing synthetic matrices for enhanced organoid development: A step towards better disease understanding
设计合成基质以增强类器官发育:更好地了解疾病的一步
  • 批准号:
    MR/Y033760/1
  • 财政年份:
    2024
  • 资助金额:
    $ 59.71万
  • 项目类别:
    Research Grant
Towards better structural steels sections: optimisation of high frequency induction welded line pipe products
迈向更好的结构钢截面:高频感应焊管产品的优化
  • 批准号:
    2884562
  • 财政年份:
    2023
  • 资助金额:
    $ 59.71万
  • 项目类别:
    Studentship
Analysis of synthetic derivatives with reduced lipophilicity as candidate potentiators towards better treatment alternatives for Cystic Fibrosis
分析亲脂性降低的合成衍生物作为候选增效剂,以获得更好的囊性纤维化治疗替代方案
  • 批准号:
    481159
  • 财政年份:
    2023
  • 资助金额:
    $ 59.71万
  • 项目类别:
Towards a better understanding of cardio and cerebrovascular diseases
加深对心脑血管疾病的认识
  • 批准号:
    2872635
  • 财政年份:
    2023
  • 资助金额:
    $ 59.71万
  • 项目类别:
    Studentship
CAREER: NgOS: Towards Better Operating Systems: Fast, Secure, and Reliable
职业:NgOS:迈向更好的操作系统:快速、安全且可靠
  • 批准号:
    2239615
  • 财政年份:
    2023
  • 资助金额:
    $ 59.71万
  • 项目类别:
    Continuing Grant
Towards a better understanding of FC-CVD carbon nanotube synthesis
更好地理解 FC-CVD 碳纳米管合成
  • 批准号:
    2891622
  • 财政年份:
    2023
  • 资助金额:
    $ 59.71万
  • 项目类别:
    Studentship
Towards a better understanding of polar climate variability
更好地了解极地气候变化
  • 批准号:
    RGPIN-2021-03888
  • 财政年份:
    2022
  • 资助金额:
    $ 59.71万
  • 项目类别:
    Discovery Grants Program - Individual
Towards a better understanding of the effect of the pentafluorosulfanyl group on the lipophilicity and acid/base properties of alcohols and amines
更好地了解五氟硫基对醇和胺的亲脂性和酸/碱性质的影响
  • 批准号:
    571856-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 59.71万
  • 项目类别:
    Alliance Grants
Towards Better Understanding of ALS using a Multi-Marker Discovery Approach from a Multi-Modal Database (ALS4M)
使用多模态数据库的多标记发现方法更好地理解 ALS (ALS4M)
  • 批准号:
    10704220
  • 财政年份:
    2022
  • 资助金额:
    $ 59.71万
  • 项目类别:
Collaborative Research: Towards Better Understanding of the Climate System Using a Global Storm-Resolving Model
合作研究:利用全球风暴解决模型更好地了解气候系统
  • 批准号:
    2218829
  • 财政年份:
    2022
  • 资助金额:
    $ 59.71万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了