CAREER: Towards Provenance-Driven Understanding of Machine Learning Robustness

职业:对机器学习鲁棒性的起源驱动理解

基本信息

项目摘要

Machine Learning (ML) is increasingly used in socially critical applications such as self-driving cars, medicine, finance, and criminal justice. However, ML is also susceptible to adversaries who can attack both the data models are trained on and the ML models themselves. This can lead to poor behavior in the models and poor decisions in the people who use them. This project’s goal is to advance our ability to detect and respond to attacks through focusing on provenance: systematic capture of the data and training methods used in building models, along with the inference processes and decisions made after they are deployed. By capturing these data and developing methods to use the data when assessing risks, auditing models, and forensically analyzing incidents, the work will make ML systems both more robust and more accountable around attacks. These capabilities will in turn benefit organizations that develop and use ML models, along with policymakers and regulators who oversee their effects. The work is organized into three main thrusts. The first thrust focuses on systematic capture and characterization of pre-deployment (training) and post-deployment (inference) provenance, focusing on what constitutes training and inference provenance and the innate nondeterminism of ML computations. In particular, training and inference metadata, training progression, inference computation dynamics, and per-label characterization approaches will be explored. The second thrust will use these data for provenance-driven detection of training data poisoning and model evasion across a range of threat models and application domains. For poisoning detection, both similarity-based and distribution shift detection-based approaches will be pursued while for evasion detection, inference provenance will be analyzed empirically and structurally. The third thrust focuses on developing post-compromise forensics capabilities with the goal of tracing back attacks to their cause(s) and mitigating future attacks. Integrated with these three thrusts is an educational plan that includes developing new courses on ML trustworthiness for undergraduate and graduate students, robust ML-focused ethical hacking competitions for undergraduates, and K-12 summer camps on robust ML to develop and diversify the next generation of cybersecurity workers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机器学习(ML)越来越多地应用于社会关键应用,如自动驾驶汽车、医疗、金融和刑事司法。然而,ML也容易受到对手的攻击,他们既可以攻击训练的数据模型,也可以攻击ML模型本身。这可能会导致模型中的不良行为和使用它们的人的糟糕决策。该项目的目标是通过关注来源来提高我们检测和应对攻击的能力:系统地捕获数据和在建立模型时使用的培训方法,以及在部署后做出的推理过程和决策。通过捕获这些数据并开发在评估风险、审计模型和对事件进行取证分析时使用这些数据的方法,这项工作将使ML系统在应对攻击时更加健壮和更负责任。这些能力反过来将使开发和使用ML模型的组织以及监督其影响的政策制定者和监管机构受益。这项工作被组织成三个主要推动力。第一个重点是系统地捕获和表征部署前(训练)和部署后(推理)来源,重点是什么构成训练和推理来源以及ML计算固有的不确定性。特别是,将探索训练和推理元数据、训练进度、推理计算动力学和每标签表征方法。第二个推力将使用这些数据对一系列威胁模型和应用领域中的训练数据中毒和模型规避进行来源驱动的检测。对于中毒检测,将采用基于相似性和基于分布平移检测的方法,而对于规避检测,将从经验和结构上分析推理来源。第三个重点是发展后妥协取证能力,目标是追踪攻击的原因(S)并减轻未来的攻击。与这三项努力相结合的是一项教育计划,其中包括为本科生和研究生开发关于ML可信度的新课程,为本科生开发强大的ML道德黑客竞赛,以及关于稳健ML的K-12夏令营,以培养和多样化下一代网络安全工作者。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
DeResistor: Toward Detection-Resistant Probing for Evasion of Internet Censorship
DeResistor:针对逃避互联网审查的抗检测探测
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Amich, Abderrahmen;Eshete, Birhanu;Yegneswaran, Vinod;Hoang, Nguyen Phong
  • 通讯作者:
    Hoang, Nguyen Phong
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Birhanu Eshete其他文献

ProPatrol: Attack Investigation via Extracted High-Level Tasks
ProPatrol:通过提取的高级任务进行攻击调查
  • DOI:
    10.1007/978-3-030-05171-6_6
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sadegh M. Milajerdi;Birhanu Eshete;Rigel Gjomemo;V. Venkatakrishnan
  • 通讯作者:
    V. Venkatakrishnan
DP-UTIL: Comprehensive Utility Analysis of Differential Privacy in Machine Learning
DP-UTIL:机器学习中差分隐私的综合效用分析
Effective Analysis, Characterization, and Detection of Malicious Activities on the Web
  • DOI:
  • 发表时间:
    2013-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Birhanu Eshete
  • 通讯作者:
    Birhanu Eshete
Effective analysis, characterization, and detection of malicious web pages
Early Detection of Security Misconfiguration Vulnerabilities in Web Applications
及早检测 Web 应用程序中的安全配置错误漏洞

Birhanu Eshete的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

CAREER: Adaptive Deep Learning Systems Towards Edge Intelligence
职业:迈向边缘智能的自适应深度学习系统
  • 批准号:
    2338512
  • 财政年份:
    2024
  • 资助金额:
    $ 61.98万
  • 项目类别:
    Continuing Grant
CAREER: Towards highly efficient UV emitters with lattice engineered substrates
事业:采用晶格工程基板实现高效紫外线发射器
  • 批准号:
    2338683
  • 财政年份:
    2024
  • 资助金额:
    $ 61.98万
  • 项目类别:
    Continuing Grant
Postdoctoral Fellowship: STEMEdIPRF: Towards a Diverse Professoriate: Experiences that Inform Underrepresented Scholars' Perceptions of Value Alignment and Career Decisions
博士后奖学金:STEMEdIPRF:走向多元化的教授职称:为代表性不足的学者对价值调整和职业决策的看法提供信息的经验
  • 批准号:
    2327411
  • 财政年份:
    2024
  • 资助金额:
    $ 61.98万
  • 项目类别:
    Standard Grant
Collaborative Research: Maritime to Inland Transitions Towards ENvironments for Convection Initiation (MITTEN CI)
合作研究:海洋到内陆向对流引发环境的转变(MITTEN CI)
  • 批准号:
    2349935
  • 财政年份:
    2024
  • 资助金额:
    $ 61.98万
  • 项目类别:
    Continuing Grant
Collaborative Research: Maritime to Inland Transitions Towards ENvironments for Convection Initiation (MITTEN CI)
合作研究:海洋到内陆向对流引发环境的转变(MITTEN CI)
  • 批准号:
    2349934
  • 财政年份:
    2024
  • 资助金额:
    $ 61.98万
  • 项目类别:
    Continuing Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
  • 批准号:
    2400195
  • 财政年份:
    2024
  • 资助金额:
    $ 61.98万
  • 项目类别:
    Standard Grant
ASCENT: Heterogeneously Integrated and AI-Empowered Millimeter-Wave Wide-Bandgap Transmitter Array towards Energy- and Spectrum-Efficient Next-G Communications
ASCENT:异构集成和人工智能支持的毫米波宽带隙发射机阵列,实现节能和频谱高效的下一代通信
  • 批准号:
    2328281
  • 财政年份:
    2024
  • 资助金额:
    $ 61.98万
  • 项目类别:
    Standard Grant
CAREER: Towards a comprehensive model of seismicity throughout the seismic cycle
职业:建立整个地震周期地震活动的综合模型
  • 批准号:
    2339556
  • 财政年份:
    2024
  • 资助金额:
    $ 61.98万
  • 项目类别:
    Continuing Grant
CAREER: Towards Safety-Critical Real-Time Systems with Learning Components
职业:迈向具有学习组件的安全关键实时系统
  • 批准号:
    2340171
  • 财政年份:
    2024
  • 资助金额:
    $ 61.98万
  • 项目类别:
    Continuing Grant
Sexual offence interviewing: Towards victim-survivor well-being and justice
性犯罪面谈:为了受害者-幸存者的福祉和正义
  • 批准号:
    DE240100109
  • 财政年份:
    2024
  • 资助金额:
    $ 61.98万
  • 项目类别:
    Discovery Early Career Researcher Award
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了