CAREER: Robustness of Inductive Reasoning Engines

职业:归纳推理引擎的鲁棒性

基本信息

  • 批准号:
    1846327
  • 负责人:
  • 金额:
    $ 58万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-03-01 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

The past decade has seen a renaissance in the field of machine learning and simultaneously witnessed an explosion of interest in the related area of Programming by Example (PBE). While both fields have enjoyed spectacular successes, their algorithms can be brittle and can drive applications to unexpected failures. The cause of many failures in both machine-learning and PBE systems can be traced back to their shared task of inductive reasoning: learning some artifact in a hypothesis space from a set of examples. Since examples are inherently incomplete specifications, there can be a large number of artifacts that fit a set of examples but fail to generalize to an unseen example. This project advocates for a more principled approach to constructing such inductive reasoning engines based on a formal characterization of their reliability. The project casts the problem of reliability of these systems as one of robustness: is the change in the artifact learnt acceptable, or, at least predictable, in the presence of small changes to the set of examples? The project integrates concepts from formal methods, logic, relational reasoning, and computational learning theory to develop new foundations, algorithms and tools for the design and analysis of robust inductive reasoning engines. The multi-faceted project will impact formal methods and programming languages (through contributions to inductive synthesis and relational reasoning), machine learning (through automated techniques for addressing the dataset shift problem), and society (through users of inductive reasoning engines, and education activities targeting expansion of scientific literacy and computer science pathways). The investigator plans broad dissemination of results (through a workshop on robustness co-founded by the investigator, talks at outreach platforms and a graduate course).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在过去的十年里,机器学习领域出现了复兴,同时也见证了对相关领域的兴趣爆炸式增长,即通过示例编程(PBE)。虽然这两个领域都取得了巨大的成功,但它们的算法可能很脆弱,并可能导致应用程序出现意想不到的失败。机器学习和PBE系统中许多失败的原因可以追溯到它们共同的归纳推理任务:从一组示例中学习假设空间中的一些伪像。由于示例本质上是不完整的规范,因此可能会有大量的工件适合一组示例,但无法推广到一个看不见的示例。这个项目主张一个更有原则的方法来构建这样的归纳推理引擎的基础上,其可靠性的正式表征。该项目将这些系统的可靠性问题视为鲁棒性问题之一:在样本集存在小变化的情况下,工件学习的变化是否可以接受,或者至少是可预测的?该项目整合了形式方法,逻辑,关系推理和计算学习理论的概念,为设计和分析强大的归纳推理引擎开发新的基础,算法和工具。这个多方面的项目将影响正式方法和编程语言(通过对归纳合成和关系推理的贡献),机器学习(通过解决数据集转移问题的自动化技术)和社会(通过归纳推理引擎的用户,以及旨在扩大科学素养和计算机科学途径的教育活动)。研究者计划广泛传播研究结果(通过研究者共同创办的鲁棒性研讨会、外联平台上的演讲和研究生课程)。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Art: Abstraction Refinement-Guided Training for Provably Correct Neural Networks
Trace-Guided Inductive Synthesis of Recursive Functional Programs
递归函数程序的跟踪引导归纳综合
Parameterized Verification of Systems with Global Synchronization and Guards
  • DOI:
    10.1007/978-3-030-53288-8_15
  • 发表时间:
    2020-06-13
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jaber N;Jacobs S;Wagner C;Kulkarni M;Samanta R
  • 通讯作者:
    Samanta R
Synthesis of Distributed Agreement-Based Systems with Efficiently-Decidable Verification
具有高效可判定验证的分布式基于协议的系统的综合
SemCluster: clustering of imperative programming assignments based on quantitative semantic features
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Roopsha Samanta其他文献

From non-preemptive to preemptive scheduling using synchronization synthesis
  • DOI:
    10.1007/s10703-016-0256-5
  • 发表时间:
    2016-09-27
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Pavol Černý;Edmund M. Clarke;Thomas A. Henzinger;Arjun Radhakrishna;Leonid Ryzhyk;Roopsha Samanta;Thorsten Tarrach
  • 通讯作者:
    Thorsten Tarrach

Roopsha Samanta的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Roopsha Samanta', 18)}}的其他基金

Collaborative Research: Verification Mentoring Workshop at Computer Aided Verification 2019-2021
协作研究:2019-2021 年计算机辅助验证验证指导研讨会
  • 批准号:
    1905108
  • 财政年份:
    2019
  • 资助金额:
    $ 58万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: AF: Small: Exploring the Frontiers of Adversarial Robustness
合作研究:AF:小型:探索对抗鲁棒性的前沿
  • 批准号:
    2335411
  • 财政年份:
    2024
  • 资助金额:
    $ 58万
  • 项目类别:
    Standard Grant
A framework for evaluating and explaining the robustness of NLP models
评估和解释 NLP 模型稳健性的框架
  • 批准号:
    EP/X04162X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 58万
  • 项目类别:
    Research Grant
CAREER: Towards Fairness in the Real World under Generalization, Privacy and Robustness Challenges
职业:在泛化、隐私和稳健性挑战下实现现实世界的公平
  • 批准号:
    2339198
  • 财政年份:
    2024
  • 资助金额:
    $ 58万
  • 项目类别:
    Continuing Grant
CAREER: Ethical Machine Learning in Health: Robustness in Data, Learning and Deployment
职业:健康领域的道德机器学习:数据、学习和部署的稳健性
  • 批准号:
    2339381
  • 财政年份:
    2024
  • 资助金额:
    $ 58万
  • 项目类别:
    Continuing Grant
OPUS: Robustness and complexity: how evolution builds precise traits from sloppy components
OPUS:稳健性和复杂性:进化如何从草率的组成部分构建精确的特征
  • 批准号:
    2325755
  • 财政年份:
    2024
  • 资助金额:
    $ 58万
  • 项目类别:
    Standard Grant
Advancing plant synthetic gene circuit capability, robustness, and use
提高植物合成基因电路的能力、稳健性和使用
  • 批准号:
    DP240103385
  • 财政年份:
    2024
  • 资助金额:
    $ 58万
  • 项目类别:
    Discovery Projects
Robustness-oriented and serviceable design of innovative modular buildings
创新模块化建筑的稳健性和实用性设计
  • 批准号:
    DP240101301
  • 财政年份:
    2024
  • 资助金额:
    $ 58万
  • 项目类别:
    Discovery Projects
Collaborative Research: AF: Small: Exploring the Frontiers of Adversarial Robustness
合作研究:AF:小型:探索对抗鲁棒性的前沿
  • 批准号:
    2335412
  • 财政年份:
    2024
  • 资助金额:
    $ 58万
  • 项目类别:
    Standard Grant
Property-Driven Quality Assurance of Adversarial Robustness of Deep Neural Networks
深度神经网络对抗鲁棒性的属性驱动质量保证
  • 批准号:
    23K11049
  • 财政年份:
    2023
  • 资助金额:
    $ 58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: FMitF: Track I: Towards Verified Robustness and Safety in Power System-Informed Neural Networks
合作研究:FMitF:第一轨:实现电力系统通知神经网络的鲁棒性和安全性验证
  • 批准号:
    2319242
  • 财政年份:
    2023
  • 资助金额:
    $ 58万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了