CAREER: Towards Fairness in the Real World under Generalization, Privacy and Robustness Challenges

职业:在泛化、隐私和稳健性挑战下实现现实世界的公平

基本信息

  • 批准号:
    2339198
  • 负责人:
  • 金额:
    $ 49.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-04-15 至 2029-03-31
  • 项目状态:
    未结题

项目摘要

Artificial Intelligence (AI) algorithms are widely adopted in various real-world applications such as social media mining and health informatics. It becomes increasingly essential to ensure fairness in AI algorithms to avoid amplifying inequalities and reinforcing existing prejudice. Although fairness algorithms have achieved great progress recently, when deployed in the real world, they still face practical generalization, privacy and robustness challenges. First, the fairness performance can be significantly degraded under distribution shifts such as domain and temporal shifts. Second, most previous fairness algorithms require direct access to the exact demographic attributes, which is usually infeasible due to people's awareness and legal regulations on privacy. Moreover, research indicates that addressing fairness may increase privacy leakage risks. Third, malicious actors can amplify the demographic bias of AI algorithms by injecting poisoning samples in the training stage or manipulating the data in the inference stage. The goal of this project is to investigate the impact of the aforementioned issues on fairness and develop effective solutions to ensure fairness under generalization, privacy and robustness challenges.To achieve the research goal, the project systematically investigates the key directions of fairness under domain and temporal shifts, fairness faced with privacy mechanism enforcement and privacy leakage risks, bias amplification attack and defense methods. The project outcomes help advance state-of-the-art research on fair AI and introduce: (1) fairness in domain adaptation from an information-theoretical perspective and a meta-learning framework to ensure temporal-invariant fairness; (2) algorithms improving fairness performance under local differential privacy mechanism and achieving fair graph learning while minimizing the privacy leakage; and (3) poisoning and evasion attacks on fairness properties, as well as model-centric and data-centric defense methods for such attacks accordingly. More broadly, this project will have an immediate and strong impact on improving fairness algorithms in practices, enabling the responsible data analysis with advanced trustworthy AI paradigms in the real world.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人工智能(AI)算法广泛应用于各种现实世界的应用,如社交媒体挖掘和健康信息学。确保人工智能算法的公平性变得越来越重要,以避免放大不平等和加强现有的偏见。尽管近年来公平性算法取得了很大的进展,但在真实的世界中应用时,仍然面临着实用的泛化性、隐私性和鲁棒性等方面的挑战。首先,公平性的性能可以显着下降的分布移位,如域和时间的移位。其次,大多数以前的公平算法需要直接访问确切的人口统计属性,这通常是不可行的,由于人们的意识和法律的规定的隐私。此外,研究表明,解决公平问题可能会增加隐私泄露的风险。第三,恶意行为者可以通过在训练阶段注入中毒样本或在推理阶段操纵数据来放大AI算法的人口统计偏见。本项目的目标是研究上述问题对公平性的影响,并制定有效的解决方案,以确保在泛化,隐私和鲁棒性挑战下的公平性。为实现研究目标,本项目系统地研究了域和时间转移下的公平性,隐私机制实施和隐私泄漏风险下的公平性,偏见放大攻击和防御方法。该项目的成果有助于推进公平人工智能的最新研究,并介绍:(1)从信息理论的角度和元学习框架来确保时间不变公平的领域自适应公平性;(2)在局部差分隐私机制下提高公平性性能的算法,并在最小化隐私泄漏的同时实现公平图学习;(3)在局部差分隐私机制下提高公平性的算法。(3)针对公平性的投毒攻击和规避攻击,以及相应的以模型为中心和以数据为中心的防御方法。更广泛地说,该项目将对改善实践中的公平算法产生直接而强烈的影响,使负责任的数据分析与真实的世界中先进的值得信赖的AI范式。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kai Shu其他文献

Delving into Data Science Methods in Response to the COVID‐19 Infodemic
深入研究应对 COVID-19 信息流行病的数据科学方法
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Miyoung Chong;Chirag Shah;Kai Shu;He Jiangen;Loni Hagen
  • 通讯作者:
    Loni Hagen
Deep brain stimulation of fornix in Alzheimer's disease: From basic research to clinical practice
Repressors: the gatekeepers of phytohormone signaling cascades
  • DOI:
    https://doi.org/10.1007/s00299-022-02853-2
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
  • 作者:
    Usman Aziz;Muhammad Saad Rehmani;Lei Wang;Baoshan Xian;Xiaofeng Luo;Kai Shu
  • 通讯作者:
    Kai Shu
Prediction of natural runoff in China based on multi-scenario climate models with self-attention neural networks
基于具有自注意力神经网络的多情景气候模式的中国天然径流预测
  • DOI:
    10.1016/j.watres.2025.123768
  • 发表时间:
    2025-08-15
  • 期刊:
  • 影响因子:
    12.400
  • 作者:
    Naixin Hu;Kai Shu;Yuezheng Zhang;Leonardo Alfonso;Chenyang Li;Tong Zheng
  • 通讯作者:
    Tong Zheng
Flat-shaped posterior cranial fossa was associated with poor outcomes of microvascular decompression for primary hemifacial spasm
  • DOI:
    10.1007/s00701-020-04547-8
  • 发表时间:
    2020-09-15
  • 期刊:
  • 影响因子:
    1.900
  • 作者:
    Kai Zhao;Junwen Wang;Weihua Liu;Jiaxuan Zhang;Kai Shu;Ting Lei
  • 通讯作者:
    Ting Lei

Kai Shu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kai Shu', 18)}}的其他基金

Collaborative Research: SaTC: CORE: Small: Targeting Challenges in Computational Disinformation Research to Enhance Attribution, Detection, and Explanation
协作研究:SaTC:核心:小型:针对计算虚假信息研究中的挑战以增强归因、检测和解释
  • 批准号:
    2241068
  • 财政年份:
    2023
  • 资助金额:
    $ 49.98万
  • 项目类别:
    Standard Grant

相似海外基金

Sexual offence interviewing: Towards victim-survivor well-being and justice
性犯罪面谈:为了受害者-幸存者的福祉和正义
  • 批准号:
    DE240100109
  • 财政年份:
    2024
  • 资助金额:
    $ 49.98万
  • 项目类别:
    Discovery Early Career Researcher Award
Unlocking the sensory secrets of predatory wasps: towards predictive tools for managing wasps' ecosystem services in the Anthropocene
解开掠食性黄蜂的感官秘密:开发用于管理人类世黄蜂生态系统服务的预测工具
  • 批准号:
    NE/Y001397/1
  • 财政年份:
    2024
  • 资助金额:
    $ 49.98万
  • 项目类别:
    Research Grant
Development of programmable nanomachines towards the enzymatic synthesis of peptide oligonucleotide conjugates
开发用于肽寡核苷酸缀合物酶促合成的可编程纳米机器
  • 批准号:
    EP/X019624/1
  • 财政年份:
    2024
  • 资助金额:
    $ 49.98万
  • 项目类别:
    Fellowship
Postdoctoral Fellowship: STEMEdIPRF: Towards a Diverse Professoriate: Experiences that Inform Underrepresented Scholars' Perceptions of Value Alignment and Career Decisions
博士后奖学金:STEMEdIPRF:走向多元化的教授职称:为代表性不足的学者对价值调整和职业决策的看法提供信息的经验
  • 批准号:
    2327411
  • 财政年份:
    2024
  • 资助金额:
    $ 49.98万
  • 项目类别:
    Standard Grant
CAREER: Adaptive Deep Learning Systems Towards Edge Intelligence
职业:迈向边缘智能的自适应深度学习系统
  • 批准号:
    2338512
  • 财政年份:
    2024
  • 资助金额:
    $ 49.98万
  • 项目类别:
    Continuing Grant
CAREER: Towards highly efficient UV emitters with lattice engineered substrates
事业:采用晶格工程基板实现高效紫外线发射器
  • 批准号:
    2338683
  • 财政年份:
    2024
  • 资助金额:
    $ 49.98万
  • 项目类别:
    Continuing Grant
ASCENT: Heterogeneously Integrated and AI-Empowered Millimeter-Wave Wide-Bandgap Transmitter Array towards Energy- and Spectrum-Efficient Next-G Communications
ASCENT:异构集成和人工智能支持的毫米波宽带隙发射机阵列,实现节能和频谱高效的下一代通信
  • 批准号:
    2328281
  • 财政年份:
    2024
  • 资助金额:
    $ 49.98万
  • 项目类别:
    Standard Grant
Collaborative Research: Maritime to Inland Transitions Towards ENvironments for Convection Initiation (MITTEN CI)
合作研究:海洋到内陆向对流引发环境的转变(MITTEN CI)
  • 批准号:
    2349935
  • 财政年份:
    2024
  • 资助金额:
    $ 49.98万
  • 项目类别:
    Continuing Grant
Collaborative Research: Maritime to Inland Transitions Towards ENvironments for Convection Initiation (MITTEN CI)
合作研究:海洋到内陆向对流引发环境的转变(MITTEN CI)
  • 批准号:
    2349934
  • 财政年份:
    2024
  • 资助金额:
    $ 49.98万
  • 项目类别:
    Continuing Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
  • 批准号:
    2400195
  • 财政年份:
    2024
  • 资助金额:
    $ 49.98万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了