CAREER: Breakthrough Display Technology as a New Medium for Spatial Thinking in STEM

职业:突破性的显示技术作为 STEM 空间思维的新媒介

基本信息

  • 批准号:
    1846477
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-04-01 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

The goal of this project is to increase both interest and competence in STEM by developing a new type of 3D display as a tool for teaching spatial reasoning. Strong spatial reasoning skills have been important to many of humanity's greatest advances in science and engineering. To help teach these skills, this research will develop a display platform that is entirely different from all preceding 3D display technologies. The display uses light to trap multiple particles in air, then moves and illuminates these trapped particles to draw 3D images. We perceive these "spatial images" as physical objects because they are, in fact, physical objects in space. These full-color, high-definition images can be seen from every direction. The technology makes possible, for the first time, many of the 3D images portrayed in science fiction. In addition to the broader impacts for STEM education built directly into the primary research objective, a team of undergraduates under the supervision of the principal investigator (PI) will also design a 3D-centric Saturday academy called 'Spatial Forces' for middle and high school students from groups underrepresented in engineering, with a focus on low-income and rural students. These students will create interactive, revolving 3D content for a micro-museum aimed at exposing their communities to STEM topics of local relevance (e.g., preserving Native American artifacts, water conservation, the biology of native game fish, etc.). The programming will include learning from, and creating content for, demonstration installations to be incorporated into micro-museums. As part of the academy experience, students will be evaluated for both affect and spatial ability, and the results of the program will be assessed by an Education Advisory Board and disseminated to both local and out of state partners. Opportunities for program perpetuation and expansion will be provided through a collaboration with the UTAH Stem Action Center.The long-term goal of this research is to create glasses-free, interactive, 3D environments as tools to expand human capacity and creativity. The PI's recent research has led to a novel, non-holographic method of screenless 3D display with the potential to change how we interact with our data by making it physically present. To this end, the objective of the current project is to create and evaluate parallel optical trap displays (OTDs) as tools for spatial thinking. Free-floating 3D displays have been the "holy grail" of 3D imaging for over a century. Such a display would be potentially transformative for many information visualization applications; however, the application space with perhaps the greatest potential scientific impact would be that of spatial thinking, a skill that has been foundational to many of the greatest scientific achievements in history and which is also strongly associated with both interest and achievement in STEM. The PI's prototype OTD is a natively spatial 3D technology ideally suited to spatial thinking that is currently capable of drawing full-color, video-rate images of small objects with a single trapped particle. Achieving larger image volumes will require a new "parallel" OTD approach that creates a large volume OTD from multiple trapped particles illuminated independently and simultaneously. The central hypothesis of this work is that parallel OTDs will lead to better mastery of spatial concepts (as measured by standard spatial thinking tests) by making data physical and interactive. To test this hypothesis, the PI will optimize single particle traps, develop at least two parallel display methods (e.g. point trap array and line trap array), and compare parallel OTDs against screen-based tools for spatial reasoning. Parallel OTDs will be capable of providing all of the 3D visual cues of holography (accommodation, parallax, and potentially even occlusion) without being subject to its limitations (aperture constraints and prohibitive computational complexity).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的目标是通过开发一种新型的3D显示器作为空间推理教学工具来提高STEM的兴趣和能力。 强大的空间推理能力对人类在科学和工程领域的许多重大进步都很重要。 为了帮助教授这些技能,这项研究将开发一个与所有先前的3D显示技术完全不同的显示平台。 显示器使用光捕获空气中的多个颗粒,然后移动并照亮这些捕获的颗粒以绘制3D图像。 我们把这些“空间图像”视为物理对象,因为它们实际上是空间中的物理对象。这些全彩色、高清晰度的图像可以从各个方向看到。 该技术首次使科幻小说中描绘的许多3D图像成为可能。 除了直接纳入主要研究目标的STEM教育的更广泛影响外,在首席研究员(PI)的监督下,一个本科生团队还将为来自工程学代表性不足的群体的初中和高中学生设计一个以3D为中心的周六学院,名为“空间力量”,重点关注低收入和农村学生。这些学生将为一个微型博物馆创建互动的旋转3D内容,旨在让他们的社区接触到与当地相关的STEM主题(例如,保护美洲原住民文物、水资源保护、当地狩猎鱼类的生物学等)。该方案将包括学习,并创造内容,示范装置将纳入微型博物馆。作为学院体验的一部分,学生将接受影响和空间能力的评估,该计划的结果将由教育咨询委员会评估,并传播给当地和州外的合作伙伴。通过与犹他州Stem Action Center的合作,将为项目的延续和扩展提供机会。这项研究的长期目标是创造无眼镜、互动的3D环境,作为扩展人类能力和创造力的工具。PI最近的研究导致了一种新颖的非全息无屏3D显示方法,该方法有可能通过使数据物理呈现来改变我们与数据交互的方式。为此,本项目的目标是创建和评估平行光阱显示器(OTD)作为空间思维的工具。自由浮动3D显示器已经是3D成像的“圣杯”超过世纪。这样的显示对于许多信息可视化应用程序来说可能是变革性的;然而,可能具有最大潜在科学影响的应用程序空间将是空间思维,这是历史上许多最伟大的科学成就的基础技能,也与STEM的兴趣和成就密切相关。PI的原型OTD是一种原生的空间3D技术,非常适合空间思维,目前能够绘制具有单个捕获粒子的小物体的全色视频速率图像。实现更大的图像体积将需要一种新的“并行”OTD方法,该方法从多个被捕获的粒子独立且同时照射来创建大体积OTD。这项工作的中心假设是,并行的OTD将导致更好地掌握空间概念(通过标准的空间思维测试),使数据的物理和互动。为了验证这一假设,PI将优化单粒子阱,开发至少两种平行显示方法(例如,点阱阵列和线阱阵列),并将平行OTD与基于屏幕的空间推理工具进行比较。 平行光时域反射器将能够提供全息术的所有3D视觉线索(调节、视差甚至可能遮挡),而不受其限制(孔径限制和过高的计算复杂性)。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hybrid acousto-optic/electro-optic leaky-mode deflectors
混合声光/电光漏模偏转器
Body-of-revolution finite-difference time-domain modeling of hybrid-plasmonic ring resonators
混合等离子体环谐振器的旋转体有限差分时域建模
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Mirzaei-Ghormish, S;Shahabadi, M;Smalley, D.E.
  • 通讯作者:
    Smalley, D.E.
Patterning ITO using a laser cut Kapton® tape mask for flexible PVDF applications
使用激光切割 Kapton® 胶带掩模对 ITO 进行图案化,以实现柔性 PVDF 应用
Photophoretic trap testing rig for volumetric displays
用于体积显示器的光阱测试装置
  • DOI:
    10.1063/5.0060691
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Barton, Dylan;Huffman, Braden;Briceno, Ximena;Darm, Tanner;Smalley, Daniel
  • 通讯作者:
    Smalley, Daniel
Fabrication and Testing of Miniature Automatic Photophoretic Trapping Rigs
微型自动荧光捕获装置的制作和测试
  • DOI:
    10.3791/63113
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kuttler, Riley;Barton, Dylan;Weaver, Brenden;Steffan, Alexander;Huffman, Braden;Griffith, Steven;Smalley, Daniel
  • 通讯作者:
    Smalley, Daniel
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Smalley其他文献

Daniel Smalley的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Smalley', 18)}}的其他基金

PFI-TT: Kits for Developing Aerial 3D Display Technology
PFI-TT:用于开发航空 3D 显示技术的套件
  • 批准号:
    2234534
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
I-Corps: Virtual Display Creation and Demonstration for Industry and Individual Designers
I-Corps:为行业和个人设计师提供虚拟展示创建和演示
  • 批准号:
    2213428
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似海外基金

Is to achieve a breakthrough in the problem of how to reliably control the many qubits in an errorfree and scalable way.
就是要在如何以无错误且可扩展的方式可靠地控制众多量子比特的问题上取得突破。
  • 批准号:
    2906479
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Studentship
Breakthrough mathematics for dynamical systems and data
动力系统和数据的突破性数学
  • 批准号:
    FL230100088
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Australian Laureate Fellowships
A breakthrough mobile phone technology that aids in early detection of COPD
突破性手机技术有助于早期发现慢性阻塞性肺病
  • 批准号:
    10760409
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
C-Path Scientific Breakthrough Conference: Addressing unmet needs and challenges in underserved drug development areas through collaborative partnerships
C-Path 科学突破会议:通过合作伙伴关系解决服务不足的药物开发领域未满足的需求和挑战
  • 批准号:
    10827777
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Breakthrough for Practical Application of Magnetically Levitated Bearingless Motors Using Unequal Tooth Pitch Core
不等齿距铁芯磁悬浮无轴承电机实际应用的突破
  • 批准号:
    23H01367
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Possibility of health tourism as a breakthrough approach toward regional development in post-disaster coastal environments
健康旅游作为灾后沿海环境区域发展突破性途径的可能性
  • 批准号:
    23K17098
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Antimicrobial Resistance: Breakthrough Compound Discovery through Mechanistic Studies combined with Bicycle Technology and Target Validation
抗菌素耐药性:通过机理研究结合自行车技术和目标验证实现突破性化合物发现
  • 批准号:
    BB/Y003306/1
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
Modulation of Protein S-nitrosylation Signaling as a Potential Therapeutic Breakthrough in Rheumatoid Arthritis
调节蛋白质 S-亚硝基化信号传导是类风湿关节炎的潜在治疗突破
  • 批准号:
    10817318
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Enhanced BReast and cErvical cAncer screening in Kenya THROUGH implementation science research and training (The BREAKTHROUGH Center)
通过实施科学研究和培训,肯尼亚加强了乳腺癌和宫颈癌筛查(突破中心)
  • 批准号:
    10738131
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Breakthrough of turbulent transport mechanism of self-burning plasma by high energy ion and tubulence analysis
高能离子与湍流分析突破自燃等离子体湍流输运机制
  • 批准号:
    23H01160
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了