CAREER: Ultrafast hydrogen-bond dynamics in crowded, heterogeneous environments

职业:拥挤、异构环境中的超快氢键动力学

基本信息

  • 批准号:
    1847199
  • 负责人:
  • 金额:
    $ 60.43万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

With funding by the Chemical Structure Dynamics and Mechanism (CSDM-A) program of the Chemistry Division, Professor Carlos Baiz of the University of Texas at Austin is investigating the structure and motions of biological molecules in "crowded" environments. Biological molecules (biomolecules) like proteins and DNA can contain many atoms (thousands!). This means that their structures and internal motions (bending, twisting, folding) can be very complicated and hard to predict. In order to understand biomolecules, chemists have studied them in dilute solution, in other words, under conditions where they are interacting with surrounding water molecules, but not other large biomolecules. It has recently become evident that findings from these studies in dilute solution may not be representative of biological environments. In real living cells, biomolecules exist and function in crowded environments, often assembled together to form membranes, enzyme complexes, and organelles. What are the actual behaviors of biomolecules in real, crowded conditions? Professor Baiz and his students are using a technique called time-resolved, two-dimensional, infrared spectroscopy (2D IR) to study the structure and motions of molecules in more realistic, crowded environments. In order to help interpret the complicated 2D IR data, Professor Baiz is developing computer models for the crowded systems. Together, the experimental and computational studies are forming connections among molecular structure, environments, and dynamics to rationalize the mechanisms of protein interactions in the cell. Through this project, Professor Baiz and his students are providing insights into how living systems function at the molecular level. The research may also lead to new cryoprotectant technologies (cryoprotectants are chemical substances that hinder the formation of detrimental ice crystals in cells when they are frozen). The students engaged in this project are gaining valuable skills and experience in cutting edge laser optics technology as well as in the computer simulation of molecular systems. The broader impacts of this project aim to increase representation from minority students in the Chemistry graduate program at the University of Texas at Austin through organized visit days for underrepresented students across the southwestern states. These efforts seek to boost diversity among the future science and technology workforce.This project focuses on mapping the ultrafast hydrogen-bond dynamics of small molecules that mimic the protein backbone in solutions with crowding agents such as polymers and proteins to characterize the effects of crowding and confinement on solvation dynamics. Ultrafast two-dimensional infrared spectroscopy is used to extract frequency-frequency correlation functions, which are directly compared to molecular dynamics simulations. Structure-based infrared maps are used to generate spectra from molecular dynamics trajectories, and thus provide a direct connection between experiments and simulations. Vibrational probes, including thiocyanates, are used to access the solvation environments on the surface of proteins to understand the effect of protein polarity and electrostatics on local hydrogen-bond networks.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学系化学结构动力学和机制(CSDM-A)项目的资助下,德克萨斯大学奥斯汀分校的卡洛斯·贝兹教授正在研究“拥挤”环境中生物分子的结构和运动。生物分子(生物分子)如蛋白质和DNA可以包含许多原子(数千个!)。这意味着它们的结构和内部运动(弯曲,扭曲,折叠)可能非常复杂,难以预测。为了理解生物分子,化学家们在稀溶液中研究了它们,换句话说,在它们与周围的水分子相互作用的条件下,而不是其他大的生物分子。最近发现,这些研究在稀溶液中的结果可能不能代表生物环境。在真实的活细胞中,生物分子在拥挤的环境中存在并发挥作用,通常组装在一起形成膜、酶复合物和细胞器。在真实的拥挤的环境中,生物分子的实际行为是什么?Baiz教授和他的学生正在使用一种称为时间分辨二维红外光谱(2D IR)的技术来研究分子在更现实,拥挤的环境中的结构和运动。为了帮助解释复杂的2D IR数据,Baiz教授正在为拥挤的系统开发计算机模型。总之,实验和计算研究正在形成分子结构,环境和动力学之间的联系,以合理化细胞中蛋白质相互作用的机制。 通过这个项目,Baiz教授和他的学生们正在深入了解生命系统如何在分子水平上发挥作用。 这项研究还可能导致新的冷冻保护剂技术(冷冻保护剂是一种化学物质,可以在细胞冷冻时阻止有害冰晶的形成)。参与该项目的学生将获得尖端激光光学技术以及分子系统计算机模拟方面的宝贵技能和经验。 这个项目的更广泛的影响,旨在增加少数民族学生在化学研究生课程在得克萨斯大学奥斯汀分校的代表性,通过有组织的访问日为代表性不足的学生在西南部各州。该项目的重点是绘制小分子的超快氢键动力学图谱,这些小分子模拟蛋白质骨架在具有拥挤剂(如聚合物和蛋白质)的溶液中的超快氢键动力学,以表征拥挤和限制对溶剂化动力学的影响。超快二维红外光谱被用来提取频率-频率相关函数,这是直接比较分子动力学模拟。基于结构的红外图谱用于从分子动力学轨迹生成光谱,从而提供实验和模拟之间的直接联系。振动探针,包括硫氰酸盐,用于访问蛋白质表面的溶剂化环境,以了解蛋白质极性和静电对局部氢键网络的影响。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Interactive Tools for Teaching Fourier Transforms
用于教授傅里叶变换的交互式工具
  • DOI:
    10.35459/tbp.2019.000102
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Baiz, Carlos R.
  • 通讯作者:
    Baiz, Carlos R.
BoxCARS 2D IR spectroscopy with pulse shaping
  • DOI:
    10.1364/oe.471984
  • 发表时间:
    2023-01-16
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Al-Mualem, Ziareena A.;Chen, Xiaobing;Baiz, Carlos R.
  • 通讯作者:
    Baiz, Carlos R.
Molecular Mechanism of Cell Membrane Protection by Sugars: A Study of Interfacial H-Bond Networks
糖保护细胞膜的分子机制:界面氢键网络的研究
Short- and long-range crowding effects on water’s hydrogen bond networks
对水氢键网络的短期和长期拥挤效应
  • DOI:
    10.1016/j.xcrp.2021.100419
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    8.9
  • 作者:
    You, Xiao;Shirley, Joseph C.;Lee, Euihyun;Baiz, Carlos R.
  • 通讯作者:
    Baiz, Carlos R.
Ultrafast pH-jump two-dimensional infrared spectroscopy
  • DOI:
    10.1364/ol.44.004937
  • 发表时间:
    2019-10-15
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Flanagan, Jennifer C.;Baiz, Carlos R.
  • 通讯作者:
    Baiz, Carlos R.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Carlos Baiz其他文献

Characterizing Hydrogen-Bonding Interactions In Cryoprotectant Mixtures
  • DOI:
    10.1016/j.cryobiol.2019.10.088
  • 发表时间:
    2019-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Kwang-Im Oh;Carlos Baiz
  • 通讯作者:
    Carlos Baiz

Carlos Baiz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Carlos Baiz', 18)}}的其他基金

Understanding Highly Heterogeneous Biological Membranes
了解高度异质的生物膜
  • 批准号:
    2129209
  • 财政年份:
    2021
  • 资助金额:
    $ 60.43万
  • 项目类别:
    Standard Grant
Understanding Highly Heterogeneous Biological Membranes
了解高度异质的生物膜
  • 批准号:
    1815354
  • 财政年份:
    2018
  • 资助金额:
    $ 60.43万
  • 项目类别:
    Standard Grant

相似国自然基金

基于Ultrafast-VPCR技术的半夏药材及其成药快速基因检测体系的建立以及应用
  • 批准号:
    81973434
  • 批准年份:
    2019
  • 资助金额:
    54.0 万元
  • 项目类别:
    面上项目

相似海外基金

Unravelling enzymatic hydrogen production mechanisms with ultrafast 2D-IR spectroscopy
利用超快二维红外光谱揭示酶促产氢机制
  • 批准号:
    2107430
  • 财政年份:
    2018
  • 资助金额:
    $ 60.43万
  • 项目类别:
    Studentship
Widely Tunable Cavity-Enhanced Ultrafast Spectroscopy and the Dynamics of Hydrogen Bond Networks
宽可调腔增强超快光谱和氢键网络动力学
  • 批准号:
    1708743
  • 财政年份:
    2017
  • 资助金额:
    $ 60.43万
  • 项目类别:
    Continuing Grant
Ultrafast spectroscopic study for visualizing the coupling between electronic excitation and hydrogen-bond dynamics
用于可视化电子激发与氢键动力学之间耦合的超快光谱研究
  • 批准号:
    16H04102
  • 财政年份:
    2016
  • 资助金额:
    $ 60.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Two-dimensional terahertz/IR spectroscopy: a unique probe of ultrafast hydrogen-bond dynamics of liquid water and model systems
二维太赫兹/红外光谱:液态水超快氢键动力学和模型系统的独特探针
  • 批准号:
    EP/F06926X/2
  • 财政年份:
    2011
  • 资助金额:
    $ 60.43万
  • 项目类别:
    Research Grant
Two-dimensional terahertz/IR spectroscopy: a unique probe of ultrafast hydrogen-bond dynamics of liquid water and model systems
二维太赫兹/红外光谱:液态水超快氢键动力学和模型系统的独特探针
  • 批准号:
    EP/F06926X/1
  • 财政年份:
    2009
  • 资助金额:
    $ 60.43万
  • 项目类别:
    Research Grant
Ultrafast Processing in Proteins and Other Assemblies
蛋白质和其他组装体的超快处理
  • 批准号:
    7932592
  • 财政年份:
    2009
  • 资助金额:
    $ 60.43万
  • 项目类别:
CAREER: Ultrafast Spectroscopy and Hydrogen Bond Dynamics of Water at Interfaces and Biological Surfaces
职业:界面和生物表面水的超快光谱和氢键动力学
  • 批准号:
    1044514
  • 财政年份:
    2009
  • 资助金额:
    $ 60.43万
  • 项目类别:
    Continuing Grant
Ultrafast Vibrational Dynamics and Infrared Spectroscopy of Biologically Relevant Hydrogen Bonds
生物相关氢键的超快振动动力学和红外光谱
  • 批准号:
    111246604
  • 财政年份:
    2009
  • 资助金额:
    $ 60.43万
  • 项目类别:
    Research Grants
Ultrafast hydrogen migration
超快氢迁移
  • 批准号:
    19002006
  • 财政年份:
    2007
  • 资助金额:
    $ 60.43万
  • 项目类别:
    Grant-in-Aid for Specially Promoted Research
Characterization of hydrogen bonded transients in liquid water and ice by ultrafast infrared pump and x-ray absorption probe spectroscopy
通过超快红外泵和 X 射线吸收探针光谱表征液态水和冰中的氢键瞬态
  • 批准号:
    26519276
  • 财政年份:
    2006
  • 资助金额:
    $ 60.43万
  • 项目类别:
    Priority Programmes
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了