CAREER: Fluid-Structure-Control Interactions in Bioinspired Robots with Actively Morphing Fins

职业:具有主动变形鳍的仿生机器人中的流-结构-控制相互作用

基本信息

项目摘要

This Faculty Early Career Development Program (CAREER) project will benefit the national interests from a scientific, economic, and security perspective by supporting fundamental research on bioinspired underwater robots equipped with actively morphing fins. The research work is inspired by marine creatures that continuously change their fins' shape and stiffness to achieve optimal energy advantage for different swimming regimes. This project will study the fundamental role of active fin stiffness and shape control for the purpose of enhanced underwater propulsion. Understanding this novel swimming paradigm will allow for robotic vehicles with highly efficient operation, enabling missions with extended duration and autonomy. As a result, the new knowledge will enable the development of next generation underwater robots for scientific exploration and ecological conservation of water bodies, underwater resource prospecting and mapping, and surveillance or stealth operations for defense purposes. Through an integrated research and education plan, this project will positively impact graduate and undergraduate students and will support K-12 STEM education in the state of Nevada and beyond, with emphasis to broadening participation of underrepresented students in engineering.The research objective of this CAREER project is to establish the bioinspired framework of unsteady fluid-structure-control interactions which will address fundamental scientific questions in dynamical systems and enable an engineering paradigm shift in soft robotic underwater propulsion. This research will contribute new understanding of the complex interplay of morphing active flexible structures and the surrounding fluid environment by synergistically leveraging structural and fluid nonlinearities via self-sensing and feedback control. Models for self-sensing and control via smart materials embedded in artificial fins will be formulated and implemented. The system coupled dynamics will be studied theoretically and experimentally characterized via image-based motion analysis and flow diagnostics. Modeling, simulations, and experiments will be translated into robotic platforms to study bioinspired locomotion and test hypotheses on the effectiveness of active morphing. This project will advance the theory of nonlinear systems with time-periodic coefficients, by investigating control-induced instabilities and complex structural resonances mediated by nonlinear hydrodynamic actions. It will elucidate the potential of harnessing vortex shedding for flow control and its relation to modulation of hydrodynamic forces and power dissipation. Furthermore, this project will advance the current state-of-the-art in underwater robotic propulsion, by exploiting the transformative concept of active stiffness and shape morphing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该教师早期职业发展计划(CAREER)项目将通过支持配备主动变形鳍的仿生水下机器人的基础研究,从科学,经济和安全的角度受益于国家利益。这项研究工作的灵感来自海洋生物,它们不断改变鳍的形状和刚度,以实现不同游泳状态的最佳能量优势。本项目将研究主动鳍刚度和形状控制对增强水下推进的基本作用。了解这种新的游泳模式将允许机器人车辆高效运行,使任务具有更长的持续时间和自主性。因此,新知识将使下一代水下机器人的开发成为可能,用于科学探索和水体生态保护,水下资源勘探和测绘,以及用于国防目的的监视或隐形行动。通过综合研究和教育计划,该项目将对研究生和本科生产生积极影响,并将支持内华达州及其他地区的K-12 STEM教育,该项目的研究目标是建立非稳态流体结构的仿生框架,控制互动,这将解决动力系统中的基本科学问题,并使软机器人水下推进的工程范式转变。这项研究将有助于变形主动柔性结构和周围的流体环境的复杂相互作用的新的理解,通过协同利用结构和流体的非线性,通过自感知和反馈控制。将制定和实施通过嵌入人工鳍的智能材料进行自感知和控制的模型。系统耦合动力学将通过基于图像的运动分析和流量诊断进行理论和实验研究。建模,模拟和实验将被转化为机器人平台,以研究生物启发的运动和测试假设的有效性主动变形。本项目将通过研究由非线性水动力作用介导的控制诱导不稳定性和复杂结构共振,推进具有时间周期系数的非线性系统理论。它将阐明利用旋涡脱落进行流动控制的潜力及其与水动力和功率耗散的调制的关系。此外,该项目将通过利用主动刚度和形状变形的变革性概念,推进水下机器人推进的当前最先进水平。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Underwater oscillations of rigid plates with H-shaped cross sections: An experimental study to explore their flow physics
  • DOI:
    10.1063/5.0141889
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Burak Gulsacan;M. Aureli
  • 通讯作者:
    Burak Gulsacan;M. Aureli
A Novel Plate-Like Sensor Utilizing Curvature-Based Stiffening for Nanometrology Applications
一种利用基于曲率的加固的新型板状传感器,用于纳米计量应用
Finite amplitude torsional oscillations of shape-morphing plates immersed in viscous fluids
  • DOI:
    10.1063/1.5136256
  • 发表时间:
    2020-05
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    S. Ahsan;M. Aureli
  • 通讯作者:
    S. Ahsan;M. Aureli
Sensor Egregium—An Atomic Force Microscope Sensor for Continuously Variable Resonance Amplification
  • DOI:
    10.1115/1.4050274
  • 发表时间:
    2021-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Shihab;Tasmirul Jalil;Burak Gulsacan;M. Aureli;R. Tung
  • 通讯作者:
    R. Shihab;Tasmirul Jalil;Burak Gulsacan;M. Aureli;R. Tung
A Plate-Like Sensor for the Identification of Sample Viscoelastic Properties Using Contact Resonance Atomic Force Microscopy
  • DOI:
    10.1115/1.4049538
  • 发表时间:
    2021-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Aureli;R. Tung
  • 通讯作者:
    M. Aureli;R. Tung
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matteo Aureli其他文献

Matteo Aureli的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matteo Aureli', 18)}}的其他基金

Collaborative Research: Microengineered electroactive polymer strain sensors towards soft self-powered wearable cyber-physical systems
合作研究:面向软自供电可穿戴网络物理系统的微工程电活性聚合物应变传感器
  • 批准号:
    1809852
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

随机进程代数模型的Fluid逼近问题研究
  • 批准号:
    61472343
  • 批准年份:
    2014
  • 资助金额:
    75.0 万元
  • 项目类别:
    面上项目
ICF中电子/离子输运的PIC-FLUID混合模拟方法研究
  • 批准号:
    11275269
  • 批准年份:
    2012
  • 资助金额:
    80.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Open-source GPU-accelerated computational infrastructure for coastal fluid-structure interaction in extreme hydrodynamic conditions
职业:极端​​水动力条件下沿海流固耦合的开源 GPU 加速计算基础设施
  • 批准号:
    2338313
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Fluid-Structure Interactions of Ultrasoft Shape-Morphing Membranes
职业:超软变形膜的流固相互作用
  • 批准号:
    2340593
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Understanding and Harnessing the Dynamics of Complex Fluid-Structure Interactions
职业:理解和利用复杂流固相互作用的动力学
  • 批准号:
    2237542
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Controlling fluid structure interactions within an oscillating foil turbine array
职业:控制振荡箔涡轮阵列内的流体结构相互作用
  • 批准号:
    2338957
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Fluid-Structure Interactions in Pulsatile Flow
职业:脉动流中的流固相互作用
  • 批准号:
    2145189
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Forward and Inverse Uncertainty Quantification of Cardiovascular Fluid-Structure Dynamics via Multi-fidelity Physics-Informed Bayesian Geometric Deep Learning
职业:通过多保真物理信息贝叶斯几何深度学习对心血管流体结构动力学进行正向和逆向不确定性量化
  • 批准号:
    2047127
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Fluid-Structure-Surface Interactions of Flexible Bodies at the Air-Water Interface
职业:空气-水界面处柔性体的流-固-表面相互作用
  • 批准号:
    2143263
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Fluid-structure interactions in cytoskeletal assemblies
职业:细胞骨架组装中的流固相互作用
  • 批准号:
    1944156
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: A Local-Nonlocal Coupling Framework for Tissue Damage in Fluid-Structure Interaction
职业生涯:流固耦合中组织损伤的局部-非局部耦合框架
  • 批准号:
    1753031
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Fluid-Structure Interaction (FSI) in Biological Flows
职业:生物流中的流固耦合 (FSI)
  • 批准号:
    1829408
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了