CAREER: Forward and Inverse Uncertainty Quantification of Cardiovascular Fluid-Structure Dynamics via Multi-fidelity Physics-Informed Bayesian Geometric Deep Learning
职业:通过多保真物理信息贝叶斯几何深度学习对心血管流体结构动力学进行正向和逆向不确定性量化
基本信息
- 批准号:2047127
- 负责人:
- 金额:$ 52.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-15 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Image-based computational models of the cardiovascular system play an increasingly important role in advancing the fundamental understanding of cardiovascular physiology and supporting clinical diagnosis and treatment planning. However, traditional models are primarily based on well-posed physics that are solved numerically, and their reliability is limited because of unknown or uncertain modeling conditions. On the other hand, sparse and noisy data have become increasingly available thanks to the rapid development of medical imaging techniques (e.g., flow MR images), which can be utilized for model inference and uncertainty reduction. Hence, forward uncertainty quantification and inverse data assimilation in cardiovascular simulations are of paramount importance to enhancing predictive confidence and prompting clinical translation efforts. This project will develop computational cyberinfrastructure for data-enabled forward and inverse stochastic cardiovascular modeling by leveraging recent advances in scientific machine learning. The project aims to establish a novel paradigm of data-augmented cardiovascular fluid-structure simulations, which could help transform personalized cardiovascular diagnostics/therapeutics, leading to higher quality of life. Moreover, this research program will also try to address long-standing challenges in effectively engaging students in STEM education across K-12, undergraduate, and graduate education by promoting an interactive and inclusive learning strategy. In particular, the PI will (1) design pedagogical software using physics-informed transfer learning for rapid interactive fluid simulation based on hand-drawn sketches; (2) develop new modules on Artificial Intelligence & Mechanics for U.S. Department of Education TRiO programs to engage K-12 students from low-income families in emerging interdisciplinary STEM fields. The overarching goal of this CAREER program is to pioneer a scalable and transformative computational cyberinfrastructure for forward and inverse uncertainty quantification (UQ) of cardiovascular modeling based on physics-informed Bayesian geometric deep learning, leveraging physics/physiological knowledge to enable efficient probabilistic learning with sparse and noisy data. This project tackles the fundamental challenges faced by the traditional paradigm of modeling cardiovascular fluid-structure interaction (FSI) dynamics. In the proposed framework, geometric deep learning models will be constructed based on both (partially) known physics and sparse measurement data in a Bayesian manner, enabling efficient forward and inverse FSI simulations with quantified uncertainties. Specifically, the PI will (1) formulate a variational PDE-informed, discretization-based learning framework using graph convolutional networks and use a reduced basis to constrain the dimension of the solution space, facilitating network training; (2) enable high-dimensional UQ capability of the proposed learning framework based on scalable variational Bayesian inference; (3) establish a multi-fidelity meta-learning strategy to parameterize solutions in the physical parameter space for rapid surrogate modeling, on the path to real-time cardiovascular simulations. The fast inference speed, strong expressibility, and GPU parallelization of deep learning models will be exploited to enable large-scale stochastic FSI simulations with patient-specific geometries. This project will build a solid foundation for developing the next-generation computational cyberinfrastructure of cardiovascular FSI modeling.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
基于图像的心血管系统计算模型在促进对心血管生理学的基本理解和支持临床诊断和治疗计划方面发挥着越来越重要的作用。然而,传统的模型主要是基于适定的物理数值求解,其可靠性是有限的,因为未知或不确定的建模条件。另一方面,由于医学成像技术(例如,流MR图像),其可以用于模型推断和不确定性降低。因此,心血管模拟中的正向不确定性量化和反向数据同化对于提高预测置信度和促进临床翻译工作至关重要。该项目将通过利用科学机器学习的最新进展,为数据支持的正向和反向随机心血管建模开发计算网络基础设施。该项目旨在建立一种数据增强的心血管流体结构模拟的新范式,这可能有助于改变个性化的心血管诊断/治疗,从而提高生活质量。此外,该研究计划还将通过促进互动和包容性学习策略,努力解决长期存在的挑战,有效地让学生参与K-12,本科和研究生教育的STEM教育。特别是,PI将(1)使用物理学知识的迁移学习设计教学软件,用于基于手绘草图的快速交互式流体模拟;(2)为美国教育部TRIO计划开发人工智能力学新模块,以吸引来自低收入家庭的K-12学生参与新兴的跨学科STEM领域。该CAREER计划的总体目标是开创一种可扩展和变革性的计算网络基础设施,用于基于物理学贝叶斯几何深度学习的心血管建模的正向和反向不确定性量化(UQ),利用物理/生理学知识实现稀疏和噪声数据的有效概率学习。该项目解决了心血管流体-结构相互作用(FSI)动力学建模的传统范式所面临的根本挑战。在拟议的框架中,几何深度学习模型将以贝叶斯方式基于(部分)已知的物理和稀疏测量数据构建,从而实现具有量化不确定性的高效正向和反向FSI模拟。具体而言,PI将(1)使用图卷积网络制定变分PDE通知的基于离散化的学习框架,并使用减少的基础来约束解空间的维度,促进网络训练;(2)基于可扩展变分贝叶斯推理实现所提出的学习框架的高维UQ能力;(3)建立一种多保真度元学习策略,在物理参数空间中对解进行参数化,用于快速替代建模,从而实现实时心血管仿真。深度学习模型的快速推理速度,强大的可表达性和GPU并行化将被利用,以实现具有患者特定几何形状的大规模随机FSI模拟。该项目将为开发心血管FSI建模的下一代计算网络基础设施奠定坚实的基础。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Physics-informed deep learning for solving phonon Boltzmann transport equation with large temperature non-equilibrium
- DOI:10.1038/s41524-022-00712-y
- 发表时间:2022-02-08
- 期刊:
- 影响因子:9.7
- 作者:Li, Ruiyang;Wang, Jian-Xun;Luo, Tengfei
- 通讯作者:Luo, Tengfei
Physics-informed Dyna-style model-based deep reinforcement learning for dynamic control
- DOI:10.1098/rspa.2021.0618
- 发表时间:2021-07
- 期刊:
- 影响因子:0
- 作者:Xin-Yang Liu;Jian-Xun Wang
- 通讯作者:Xin-Yang Liu;Jian-Xun Wang
Physics-integrated neural differentiable (PiNDiff) model for composites manufacturing
- DOI:10.1016/j.cma.2023.115902
- 发表时间:2023-03
- 期刊:
- 影响因子:7.2
- 作者:Deepak Akhare;T. Luo;Jian-Xun Wang
- 通讯作者:Deepak Akhare;T. Luo;Jian-Xun Wang
PhyCRNet: Physics-informed Convolutional-Recurrent Network for Solving Spatiotemporal PDEs
- DOI:10.1016/j.cma.2021.114399
- 发表时间:2021-06
- 期刊:
- 影响因子:0
- 作者:Pu Ren;Chengping Rao;Yang Liu;Jianxun Wang;Hao Sun-
- 通讯作者:Pu Ren;Chengping Rao;Yang Liu;Jianxun Wang;Hao Sun-
Bayesian Spline Learning for Equation Discovery of Nonlinear Dynamics with Quantified Uncertainty
- DOI:10.48550/arxiv.2210.08095
- 发表时间:2022-10
- 期刊:
- 影响因子:0
- 作者:Luning Sun;D. Huang;Hao Sun-;Jian-Xun Wang
- 通讯作者:Luning Sun;D. Huang;Hao Sun-;Jian-Xun Wang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jian-Xun Wang其他文献
Post-translational modification of Parkin and its research progress in cancer
帕金的翻译后修饰及其在癌症中的研究进展
- DOI:
10.1186/s40880-019-0421-5 - 发表时间:
2019-11-21 - 期刊:
- 影响因子:24.900
- 作者:
Dan Ding;Xiang Ao;Ying Liu;Yuan-Yong Wang;Hong-Ge Fa;Meng-Yu Wang;Yu-Qi He;Jian-Xun Wang - 通讯作者:
Jian-Xun Wang
Erratum to: Determining the degradation efficiency and mechanisms of ethyl violet using HPLC-PDA-ESI-MS and GC-MS
- DOI:
10.1186/1752-153x-8-24 - 发表时间:
2014-04-17 - 期刊:
- 影响因子:4.600
- 作者:
Chung-Shin Lu;Wan-Yu Lin;Jian-Xun Wang;Chia-Wei Wu;Chiing-Chang Chen - 通讯作者:
Chiing-Chang Chen
Gradient-free optimization of non-differentiable hybrid neural solvers for spatially heterogeneous composites
用于空间异质复合材料的不可微混合神经求解器的无梯度优化
- DOI:
10.1016/j.taml.2025.100585 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:3.300
- 作者:
Hanfeng Zhang;Tengfei Luo;Jian-Xun Wang - 通讯作者:
Jian-Xun Wang
JAX-BTE: a GPU-accelerated differentiable solver for phonon Boltzmann transport equations
JAX-BTE:用于声子玻尔兹曼输运方程的 GPU 加速可微求解器
- DOI:
10.1038/s41524-025-01635-0 - 发表时间:
2025-05-09 - 期刊:
- 影响因子:11.900
- 作者:
Wenjie Shang;Jiahang Zhou;J. P. Panda;Zhihao Xu;Yi Liu;Pan Du;Jian-Xun Wang;Tengfei Luo - 通讯作者:
Tengfei Luo
Conditional neural field latent diffusion model for generating spatiotemporal turbulence
用于生成时空湍流的条件神经场潜在扩散模型
- DOI:
10.1038/s41467-024-54712-1 - 发表时间:
2024-11-29 - 期刊:
- 影响因子:15.700
- 作者:
Pan Du;Meet Hemant Parikh;Xiantao Fan;Xin-Yang Liu;Jian-Xun Wang - 通讯作者:
Jian-Xun Wang
Jian-Xun Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jian-Xun Wang', 18)}}的其他基金
Physics-Constrained Deep Learning for Surrogate Modeling of Dynamics of Fluids and Fluid-Structure Interaction
用于流体动力学和流固耦合代理建模的物理约束深度学习
- 批准号:
1934300 - 财政年份:2020
- 资助金额:
$ 52.78万 - 项目类别:
Standard Grant
相似国自然基金
Banach空间中Forward-Backward分裂法研究
- 批准号:11901171
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Forward-Looking与Backward-Looking相结合的投资组合管理
- 批准号:71471180
- 批准年份:2014
- 资助金额:60.0 万元
- 项目类别:面上项目
几类带有loss-carry-forward税收的风险模型的研究
- 批准号:11226203
- 批准年份:2012
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
相似海外基金
CAREER: Unifying Scientific Knowledge with Machine Learning for Forward, Inverse, and Hybrid Modeling of Scientific Systems
职业:将科学知识与机器学习相结合,对科学系统进行正向、逆向和混合建模
- 批准号:
2239328 - 财政年份:2023
- 资助金额:
$ 52.78万 - 项目类别:
Continuing Grant
Forward and Inverse Problems for Topological Insulators and Kinetic Equations
拓扑绝缘体和动力学方程的正逆问题
- 批准号:
2306411 - 财政年份:2023
- 资助金额:
$ 52.78万 - 项目类别:
Standard Grant
OAC Core: The Best of Both Worlds: Deep Neural Operators as Preconditioners for Physics-Based Forward and Inverse Problems
OAC 核心:两全其美:深度神经算子作为基于物理的正向和逆向问题的预处理器
- 批准号:
2313033 - 财政年份:2023
- 资助金额:
$ 52.78万 - 项目类别:
Standard Grant
Forward and Inverse Problems of Electromagnetics: Novel Algorithms and Their Implementations
电磁学的正向和逆向问题:新算法及其实现
- 批准号:
RGPIN-2020-05399 - 财政年份:2022
- 资助金额:
$ 52.78万 - 项目类别:
Discovery Grants Program - Individual
OAC Core: Toward a Rigorous and Reliable Scientific Deep Learning Framework for Forward, Inverse, and UQ Problems
OAC 核心:针对正向、逆向和 UQ 问题建立严格可靠的科学深度学习框架
- 批准号:
2212442 - 财政年份:2022
- 资助金额:
$ 52.78万 - 项目类别:
Standard Grant
Analyzing Neural Network Dynamics as Forward and Inverse Problems in the Connection Weights
将神经网络动力学分析为连接权重中的正向和逆向问题
- 批准号:
RGPIN-2020-04568 - 财政年份:2022
- 资助金额:
$ 52.78万 - 项目类别:
Discovery Grants Program - Individual
Forward and Inverse Problems of Electromagnetics: Novel Algorithms and Their Implementations
电磁学的正向和逆向问题:新算法及其实现
- 批准号:
RGPIN-2020-05399 - 财政年份:2021
- 资助金额:
$ 52.78万 - 项目类别:
Discovery Grants Program - Individual
Analyzing Neural Network Dynamics as Forward and Inverse Problems in the Connection Weights
将神经网络动力学分析为连接权重中的正向和逆向问题
- 批准号:
RGPIN-2020-04568 - 财政年份:2021
- 资助金额:
$ 52.78万 - 项目类别:
Discovery Grants Program - Individual
Analyzing Neural Network Dynamics as Forward and Inverse Problems in the Connection Weights
将神经网络动力学分析为连接权重中的正向和逆向问题
- 批准号:
RGPIN-2020-04568 - 财政年份:2020
- 资助金额:
$ 52.78万 - 项目类别:
Discovery Grants Program - Individual
Forward and inverse modeling of Black spruce tree ring series: applications to paleohydrology and paleoclimatology
黑云杉树木年轮系列的正向和逆向建模:在古水文学和古气候学中的应用
- 批准号:
RGPIN-2016-05244 - 财政年份:2020
- 资助金额:
$ 52.78万 - 项目类别:
Discovery Grants Program - Individual