CAREER: On the Neural and Mechanistic Bases of Higher-order Cognition
职业:高阶认知的神经和机械基础
基本信息
- 批准号:1847603
- 负责人:
- 金额:$ 80万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project aims to explore the neural basis of how higher-order cognitive processes facilitate a representation of our environment. To date, the vast majority of decision-making research uses relatively simple stimuli to systematically relate independent variables within an experiment to collected dependent variables such as response time, EEG, or fMRI measures. However, the decisions that we make in our everyday lives are significantly more complicated. We exist in environments where resource and reward structures change dynamically on a daily, even momentary, basis. In these environments, cognitive control is necessary to successfully adjust our goals and representations to match the dynamics of our environment. Data from the experiments conducted during this project, as well the analytic methods, will be used to create a comprehensive syllabus in the emerging field of model-based cognitive neuroscience. The materials, data, and code for performing the analyses will also be made available to the broader scientific community, so that other universities may adopt the course sequence.Cognitive control is essential to successfully adjust our goals and representations to match dynamic changes in the environment. It is argued that our understanding of the mechanisms by which control is carried out in the brain is limited by the lack of statistical methodology to (1) rigorously investigate cognitive models equipped with mechanisms of control, (2) relate mechanisms of control to brain data, and (3) justify the inclusion of complicated mechanisms by assessing model fit and complexity. In this proposal, I hope to use hierarchical (Bayesian) joint modeling techniques to address each of these three limitations. The hierarchical component of this research is specifically designed to assess individual variation in the degree to which cognitive control is executed. The joint modeling component of this research is designed to link neurophysiological measures (e.g., EEG, fMRI) to cognitive theories about how control is executed. Finally, to fully examine the degree to which stochastic mechanisms of control may best describe individual subject data, I will build on existing techniques I have developed for approximating these processes through likelihood-free Bayesian methodology. Each of these components will be used collectively to systematically examine the neural basis of control in various cognitive tasks, and specifically the degree to which individuals are capable of successfully executing said control.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在探索高阶认知过程如何促进我们对环境的表征的神经基础。迄今为止,绝大多数决策研究使用相对简单的刺激来系统地将实验中的自变量与收集的因变量(如反应时间、脑电图或功能磁共振成像测量)联系起来。然而,我们在日常生活中所做的决定要复杂得多。我们所处的环境中,资源和奖励结构每天甚至是瞬间都在动态变化。在这些环境中,认知控制对于成功调整我们的目标和表征以适应环境的动态是必要的。在这个项目中进行的实验数据,以及分析方法,将用于创建基于模型的认知神经科学这一新兴领域的综合教学大纲。执行分析的材料、数据和代码也将提供给更广泛的科学界,以便其他大学可以采用课程顺序。认知控制对于成功调整我们的目标和表征以适应环境的动态变化至关重要。本文认为,由于缺乏统计方法,我们对控制在大脑中进行的机制的理解受到限制(1)严格调查配备控制机制的认知模型,(2)将控制机制与大脑数据联系起来,以及(3)通过评估模型拟合和复杂性来证明包含复杂机制的合理性。在这个建议中,我希望使用分层(贝叶斯)联合建模技术来解决这三个限制。本研究的层次结构部分是专门设计来评估个体在认知控制执行程度上的差异。本研究的联合建模部分旨在将神经生理学测量(如脑电图、功能磁共振成像)与关于控制如何执行的认知理论联系起来。最后,为了充分研究随机控制机制在多大程度上可以最好地描述个体主体数据,我将利用我已经开发的现有技术,通过无似然贝叶斯方法来近似这些过程。这些组成部分中的每一个都将被用于系统地检查各种认知任务中控制的神经基础,特别是个体能够成功执行所述控制的程度。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Real-time Adaptive Design Optimization Within Functional MRI Experiments
功能 MRI 实验中的实时自适应设计优化
- DOI:10.1007/s42113-020-00079-7
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Bahg, Giwon;Sederberg, Per B.;Myung, Jay I.;Li, Xiangrui;Pitt, Mark A.;Lu, Zhong-Lin;Turner, Brandon M.
- 通讯作者:Turner, Brandon M.
Gaussian process linking functions for mind, brain, and behavior
- DOI:10.1073/pnas.1912342117
- 发表时间:2020-11-24
- 期刊:
- 影响因子:11.1
- 作者:Bahg, Giwon;Evans, Daniel G.;Turner, Brandon M.
- 通讯作者:Turner, Brandon M.
A regularization method for linking brain and behavior.
连接大脑和行为的正则化方法。
- DOI:10.1037/met0000387
- 发表时间:2022
- 期刊:
- 影响因子:7
- 作者:Kang, Inhan;Yi, Woojong;Turner, Brandon M.
- 通讯作者:Turner, Brandon M.
Distributed Neural Systems Support Flexible Attention Updating during Category Learning
分布式神经系统支持类别学习期间灵活的注意力更新
- DOI:10.1162/jocn_a_01882
- 发表时间:2022
- 期刊:
- 影响因子:3.2
- 作者:Weichart, Emily R.;Evans, Daniel G.;Galdo, Matthew;Bahg, Giwon;Turner, Brandon M.
- 通讯作者:Turner, Brandon M.
As within, so without, as above, so below: Common mechanisms can support between- and within-trial category learning dynamics.
- DOI:10.1037/rev0000381
- 发表时间:2022-10
- 期刊:
- 影响因子:5.4
- 作者:Weichart, Emily Ruth;Galdo, Matthew;Sloutsky, Vladimir;Turner, Brandon
- 通讯作者:Turner, Brandon
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brandon Turner其他文献
Race reporting and representation in clinical trials from 2007-2020: An analysis of gynecologic oncology and other gynecology specialties (556)
- DOI:
10.1016/s0090-8258(22)01777-2 - 发表时间:
2022-08-01 - 期刊:
- 影响因子:
- 作者:
Jecca Steinberg;Brandon Turner;Julia DiTosto;Anna Marie Young;Naixin Zhang;Connie Lu;Tierney Wolgemuth;Nora Laasiri;Kai Holder;Brannon Weeks;Michael Richardson;Jill Anderson;Natalie Squires;Dario Roque;Lynn Yee - 通讯作者:
Lynn Yee
Pulmonary Artery Pressure Response to Simulated Air Travel in a Hypobaric Chamber.
肺动脉压力对低压室中模拟空中旅行的反应。
- DOI:
10.3357/amhp.4177.2015 - 发表时间:
2015 - 期刊:
- 影响因子:0.9
- 作者:
Brandon Turner;P. Hodkinson;A. Timperley;Thomas G. Smith - 通讯作者:
Thomas G. Smith
The global burden of gynecologic oncology disease as reflected in clinical trials: An analysis of over 2,000 clinical trials (427)
- DOI:
10.1016/s0090-8258(22)01649-3 - 发表时间:
2022-08-01 - 期刊:
- 影响因子:
- 作者:
Michael Richardson;Brandon Turner;Jecca Steinberg;Christopher Magnani;Brannon Weeks;Vineeth Thirunavu;Naixin Zhang;Kai Holder;Joshua Cohen;Ritu Salani - 通讯作者:
Ritu Salani
Early phase vs. late phase clinical trials: Trends in enrollment of racial and ethnic minority groups
早期阶段与晚期阶段临床试验:少数族裔群体入组趋势
- DOI:
10.1016/j.ygyno.2024.07.104 - 发表时间:
2024-11-01 - 期刊:
- 影响因子:4.100
- 作者:
Michael Richardson;Danika Barry;Jecca Steinberg;Kai Holder;Vineeth Thirunavu;Danielle Strom;Naixin Zhang;Brandon Turner;Christopher Magnani;Brannon Weeks;Anna Marie Young;Connie Lu;Tierney Wolgemuth;Nora Laasiri;Natalie Squires;Jill Anderson;Beth Karlan;John Chan;Daniel Kapp;Dario Roque;Ritu Salani - 通讯作者:
Ritu Salani
P20 The global burden of gynecologic oncology disease as reflected in clinical trials: an analysis of over 2,000 clinical trials
- DOI:
10.1016/s0090-8258(22)00365-1 - 发表时间:
2022-06-01 - 期刊:
- 影响因子:
- 作者:
Michael Richardson;Brandon Turner;Jecca Steinberg;Christopher Magnani;Brannon Weeks;Vineeth Thirunavu;Naixin Zhang;Kai Holder;Joshua Cohen;Ritu Salani - 通讯作者:
Ritu Salani
Brandon Turner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Neural Process模型的多样化高保真技术研究
- 批准号:62306326
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
ERI: Mechanistic understanding of neural stem cell paracrine activity and extracellular vesicle secretion directed by wireless electrical stimulation
ERI:无线电刺激引导的神经干细胞旁分泌活性和细胞外囊泡分泌的机制理解
- 批准号:
2301908 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
Identifying the mechanistic role of and reversing aberrant neural activity in Alzheimer's Disease
识别阿尔茨海默病中异常神经活动的机制作用并逆转
- 批准号:
10740789 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Dynamic entanglements: the functional role and mechanistic basis of inter-individual neural synchrony
动态纠缠:个体间神经同步的功能作用和机制基础
- 批准号:
10644475 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Regulating post-traumatic stress disorder neural networks: A real-time fMRI neurofeedback mechanistic study in frontline healthcare workers
调节创伤后应激障碍神经网络:针对一线医护人员的实时功能磁共振成像神经反馈机制研究
- 批准号:
465300 - 财政年份:2022
- 资助金额:
$ 80万 - 项目类别:
Operating Grants
The Female Songbird as a Novel Mechanistic Model for the Neural Basis of Social Evaluation
雌性鸣禽作为社会评价神经基础的新机制模型
- 批准号:
10472986 - 财政年份:2022
- 资助金额:
$ 80万 - 项目类别:
MANET: Maximum Entropy Neural Networks for Mechanistic Modeling of Single Cell Behavior
MANET:用于单细胞行为机械建模的最大熵神经网络
- 批准号:
10680431 - 财政年份:2021
- 资助金额:
$ 80万 - 项目类别:
Neurobehavioral, cognitive, and mechanistic effects of intranasally administered neural stem cells and environmental enrichment after cortical impact injury in rats
大鼠皮质撞击损伤后鼻内施用神经干细胞和环境富集的神经行为、认知和机制效应
- 批准号:
10181648 - 财政年份:2021
- 资助金额:
$ 80万 - 项目类别:
MANET: Maximum Entropy Neural Networks for Mechanistic Modeling of Single Cell Behavior
MANET:用于单细胞行为机械建模的最大熵神经网络
- 批准号:
10273855 - 财政年份:2021
- 资助金额:
$ 80万 - 项目类别:
MANET: Maximum Entropy Neural Networks for Mechanistic Modeling of Single Cell Behavior
MANET:用于单细胞行为机械建模的最大熵神经网络
- 批准号:
10953177 - 财政年份:2021
- 资助金额:
$ 80万 - 项目类别:
Neurobehavioral, cognitive, and mechanistic effects of intranasally administered neural stem cells and environmental enrichment after cortical impact injury in rats
大鼠皮质撞击损伤后鼻内施用神经干细胞和环境富集的神经行为、认知和机制效应
- 批准号:
10468136 - 财政年份:2021
- 资助金额:
$ 80万 - 项目类别:














{{item.name}}会员




