CAREER: Defect Energetics and Dynamics in Concentrated Alloys

职业:浓缩合金中的缺陷能量学和动力学

基本信息

项目摘要

NON-TECHNICAL SUMMARYMetallic alloys are widely used as structural materials in many practical applications such as bridges, power plants, buildings, aircrafts, and automobiles. Conventional alloys are typically made of one principal alloying element with addition of other low-concentration alloying elements for improving alloy properties. Recently, concentrated alloys have received significant interests due to their novel properties. Different from conventional alloys, concentrated alloys consist of two or more principal alloying elements. These concentrated alloys exhibit outstanding physical properties compared to conventional alloys including high-temperature strength, corrosion resistance, radiation tolerance, as well as wear and fatigue resistance. Such superior properties are related to the unique formation and transport mechanisms of crystal defects in concentrated alloys, which are poorly understood to date. The goal of this project is to use novel computational approaches to narrow this knowledge gap. The proposed research will study the effects of alloy composition, atomic configuration of alloying elements, interaction between alloying elements on the defect formation and transport mechanisms in concentrated alloys. The connection between the atomistic mechanisms and long-term defect evolution will be assessed to understand the importance of these mechanisms on the microstructural evolution in alloys. Successful completion of this project will reveal the atomic origins that lead to the unique defect properties in concentrated alloys. The understanding may help establish science-based principles for down-selecting alloying elements to control defect diffusion and mass transport in concentrated alloys and thus achieve desired physical properties. Through laboratory sessions and hands-on computer simulation training at two outreaching programs at Virginia Tech that target on recruiting high school students from under-represented groups into engineering disciplines, this project will help attract and recruit next-generation materials scientists and engineers with diverse backgrounds. In addition, the research will be integrated into both undergraduate and graduate courses to educate and retain students in computational materials science and physical metallurgy. TECHNICAL SUMMARYLattice defects such as interstitials and vacancies as well as their clusters are main mass transport carriers in materials. Their diffusion is a critical process for governing the microstructural evolution and thus the change of physical properties in materials. Although defect energetics and dynamics are well studied in pure metals and dilute alloys, they are poorly understood in concentrated alloys including high-entropy alloys. The main objective of this project is to understand the atomic origins for the unique defect energetics and dynamics in concentrated alloys such as sluggish diffusion, which are further determined by the complex atomic configurations and interactions of alloying elements. The proposed research will start from binary concentrated alloys and gradually extend to ternary alloys and high-entropy alloys. Multiscale modeling methods including molecular statics, molecular dynamics, temperature accelerated dynamics, and cluster dynamics will be used. To understand the effect of atomic configuration, alloys of different compositions including the percolation threshold, will be studied to elucidate whether percolation leads to preferential diffusion of alloying elements. For the effect of interatomic interaction, different interactions between alloying elements will be selected in a desired way to determine the relative importance between defect formation energies and migration barriers on the sluggish diffusion. Temperature accelerated dynamics will be used to study the non-intuitive defect cluster migration mechanisms, which can reach long timescales but with full atomic fidelity. Cluster dynamics will be used to evaluate the importance of different types of defects and clusters on the long-term defect evolution at the experimentally accessible timescales. Accomplishing these tasks will enable understanding of the unique defect formation and transport mechanisms in concentrated alloys and may help the research community design novel alloys of optimum properties.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术概述金属合金在许多实际应用中广泛用作结构材料,例如桥梁、发电厂、建筑物、飞机和汽车。传统的合金通常由一种主要合金元素和添加的其他低浓度合金元素制成,以改善合金性能。近年来,高浓度合金由于其新颖的性能而受到人们的极大关注。与常规合金不同,浓缩合金由两种或两种以上的主要合金元素组成。与传统合金相比,这些浓缩合金具有出色的物理性能,包括高温强度、耐腐蚀性、耐辐射性以及耐磨性和耐疲劳性。这种上级性能与浓缩合金中晶体缺陷的独特形成和传输机制有关,迄今为止对这一机制的了解甚少。该项目的目标是使用新的计算方法来缩小这一知识差距。拟议的研究将研究合金成分、合金元素的原子构型、合金元素之间的相互作用对富集合金中缺陷形成和输运机制的影响。原子机制和长期的缺陷演变之间的联系将被评估,以了解这些机制的合金中的微观结构演变的重要性。该项目的成功完成将揭示导致浓缩合金中独特缺陷性质的原子起源。这种理解可能有助于建立基于科学的原则,用于向下选择合金元素,以控制浓缩合金中的缺陷扩散和质量传输,从而实现所需的物理性能。通过弗吉尼亚理工大学两个外展项目的实验室课程和动手计算机模拟培训,该项目的目标是从代表性不足的群体中招募高中生进入工程学科,该项目将有助于吸引和招募具有不同背景的下一代材料科学家和工程师。此外,该研究将被纳入本科和研究生课程,以教育和留住学生在计算材料科学和物理冶金。晶格缺陷,如晶体和空位及其团簇是材料中主要的质量输运载体。它们的扩散是控制材料中微观结构演变和物理性质变化的关键过程。虽然缺陷能量学和动力学在纯金属和稀合金中得到了很好的研究,但在包括高熵合金在内的浓合金中却知之甚少。该项目的主要目标是了解浓缩合金中独特缺陷能量学和动力学的原子起源,例如缓慢扩散,这进一步取决于合金元素的复杂原子构型和相互作用。建议研究从二元浓合金开始,逐步扩展到三元合金和高熵合金。多尺度模拟方法,包括分子静力学,分子动力学,温度加速动力学,和集群动力学将被使用。为了了解原子构型的影响,将研究不同组成的合金,包括渗透阈值,以阐明渗透是否导致合金元素的优先扩散。对于原子间相互作用的影响,将以期望的方式选择合金元素之间的不同相互作用,以确定缺陷形成能和迁移势垒对缓慢扩散的相对重要性。温度加速动力学将被用来研究非直观的缺陷团簇迁移机制,它可以达到很长的时间尺度,但与完整的原子保真度。团簇动力学将被用来评估不同类型的缺陷和集群的长期缺陷演变的重要性,在实验上可访问的时间尺度。完成这些任务将使人们能够理解浓缩合金中独特的缺陷形成和传输机制,并可能帮助研究界设计具有最佳性能的新型合金。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Machine Learning Based On-The-Fly Kinetic Monte Carlo Simulations of Sluggish Diffusion in Ni-Fe Concentrated Alloys
  • DOI:
    10.1016/j.jallcom.2022.168457
  • 发表时间:
    2022-12
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Wenjiang Huang;X. Bai
  • 通讯作者:
    Wenjiang Huang;X. Bai
Molecular dynamics studies of sluggish grain boundary diffusion in equiatomic FeNiCrCoCu high-entropy alloy
  • DOI:
    10.1007/s10853-023-08568-3
  • 发表时间:
    2023-05
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Axel Seoane;D. Farkas;X. Bai
  • 通讯作者:
    Axel Seoane;D. Farkas;X. Bai
Influence of compositional complexity on species diffusion behavior in high-entropy solid-solution alloys
  • DOI:
    10.1557/s43578-022-00545-x
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Axel Seoane;D. Farkas;X. Bai
  • 通讯作者:
    Axel Seoane;D. Farkas;X. Bai
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xianming Bai其他文献

Reactive flash sintering and characterization of bulk high entropy nitrides
  • DOI:
    10.1016/j.jeurceramsoc.2024.117157
  • 发表时间:
    2025-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Suprabha Das;Vadym Drozd;Andriy Durygin;Md Shariful Islam Sozal;Wenhao Li;Xianming Bai;Yong Ding;Yingdong Guan;Zhiqiang Mao;Michael Cinibulk;Zhe Cheng
  • 通讯作者:
    Zhe Cheng
Tranexamic acid use in arthroscopic rotator cuff repair is an effective and safe adjunct to improve visualization: a systematic review and meta-analysis
氨甲环酸在关节镜下肩袖修复中的应用是一种有效且安全的辅助手段,可改善可视化效果:系统评价和荟萃分析
  • DOI:
    10.1016/j.jse.2023.06.013
  • 发表时间:
    2023-11-01
  • 期刊:
  • 影响因子:
    2.900
  • 作者:
    Changxu Han;Ming Liu;Xin Lian;Tao Sun;Shengjuan Yan;Xianming Bai;Dige Gan;Bing Leng;Yi Qiu;Yizhong Ren
  • 通讯作者:
    Yizhong Ren

Xianming Bai的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
  • 批准号:
    2415119
  • 财政年份:
    2024
  • 资助金额:
    $ 55.09万
  • 项目类别:
    Continuing Grant
Corneal epithelial cell bandage to treat persistent epithelial defect
角膜上皮细胞绷带治疗持续性上皮缺损
  • 批准号:
    MR/Y019385/1
  • 财政年份:
    2024
  • 资助金额:
    $ 55.09万
  • 项目类别:
    Research Grant
Collaborative Research: Bridging the atomic scale and the mesoscale in the characterization of defect production and evolution in high entropy alloys
合作研究:在高熵合金缺陷产生和演化表征中连接原子尺度和介观尺度
  • 批准号:
    2425965
  • 财政年份:
    2024
  • 资助金额:
    $ 55.09万
  • 项目类别:
    Standard Grant
Digital Platform for Defect-free Plastic Pipes Welding (DIGIPIPEWELD)
无缺陷塑料管道焊接数字平台 (DIGIPIPEWELD)
  • 批准号:
    10055000
  • 财政年份:
    2023
  • 资助金额:
    $ 55.09万
  • 项目类别:
    Collaborative R&D
Comparative single-cell analysis of disease-derived stem cells to identify the cell fate defect on the cell differentiation trajectory
对疾病来源的干细胞进行比较单细胞分析,以确定细胞分化轨迹上的细胞命运缺陷
  • 批准号:
    23H02466
  • 财政年份:
    2023
  • 资助金额:
    $ 55.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of novel polyglycolic acid material for regeneration of central airway defect
新型聚乙醇酸再生中央气道缺损材料的研制
  • 批准号:
    23K08291
  • 财政年份:
    2023
  • 资助金额:
    $ 55.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
PFI-TT: Enhancing Manufacturing with Real-Time Defect Detection using mm-Wave Antenna Sensors
PFI-TT:使用毫米波天线传感器通过实时缺陷检测增强制造
  • 批准号:
    2234594
  • 财政年份:
    2023
  • 资助金额:
    $ 55.09万
  • 项目类别:
    Standard Grant
Characteristic control based on quantitative evaluation of nano-defect and defect-induced strain field in functional materials
基于功能材料纳米缺陷和缺陷诱发应变场定量评估的特性控制
  • 批准号:
    23KK0087
  • 财政年份:
    2023
  • 资助金额:
    $ 55.09万
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Collaborative Research)
CalibXBatt - Calibration of XCT-Automatic Defect Recognition for Battery Inspection [10050292]
CalibXBatt - 用于电池检查的 XCT 自动缺陷识别校准 [10050292]
  • 批准号:
    10061803
  • 财政年份:
    2023
  • 资助金额:
    $ 55.09万
  • 项目类别:
    Collaborative R&D
Plasma annealing for defect passivation in semiconductor materials
用于半导体材料缺陷钝化的等离子体退火
  • 批准号:
    23K03374
  • 财政年份:
    2023
  • 资助金额:
    $ 55.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了