CAREER: Improving Convective-Scale Weather Prediction through Advanced Bayesian Filtering, Verification, and Uncertainty Quantification
职业:通过高级贝叶斯过滤、验证和不确定性量化改进对流规模天气预报
基本信息
- 批准号:1848363
- 负责人:
- 金额:$ 54.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This research project is motivated by the large impact severe convective storms, hurricanes, and flooding have on life and property each year in the United States. The research will address fundamental limitations in current data assimilation (DA) and uncertainty quantification for weather models. The outcome from the research will have a tremendous impact on multi-disciplinary efforts that focus on these weather hazards, which will lead to sustained long-term reductions in forecast errors. Intellectual Merit:The project will focus on 1) the development and testing of an advanced DA framework designed to eliminate specific assumptions currently used in practice; 2) the adoption of sophisticated uncertainty visualization schemes for exploring probabilistic information estimated from ensembles; and 3) the development of a DA research and educational module for class curriculum at the University of Maryland and external summer schools.The project will adopt new Bayesian filtering techniques based on "particle filters". The method uses samples of model simulations to represent probabilistic properties of model state variables conditioned on current and past observations. In addition to providing the most thorough investigation of particle filters for weather prediction, the research will apply the method for isolating sources of bias in models and observing systems. Another unique aspect of this work is its use of novel visualization techniques developed by statisticians and computer scientists. These techniques form a set of analysis tools based on "data depth," which allows for an insightful look at multivariate ensemble output via contour and curve boxplots. They also provide a means of verifying probabilistic quantities from ensembles with no assumptions for the underlying error distribution, thus aiding in the verification of non-parametric DA techniques, like particle filters.Broader Impacts:This research is motivated directly by hazardous weather events that affect the well-being of individuals in the United States and around the world. In addition to advancing predictive skill in numerical predictions, a portion of this work focuses on uncertainty quantification and visualization of ensemble datasets, which aims to improve the communication of severe weather risk to the public. DA advancements made during this work will be committed to the National Center for Atmospheric Research's Data Assimilation Research Testbed, a community software infrastructure for linking DA research to geoscientists. The project also includes a detailed strategy for developing an educational DA module for geoscience students and researchers. The module will evolve with the work plan and result in a valuable learning tool for class exercises and summer school activities used to promote diversity in STEM fields.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该研究项目的动机是严重的对流风暴,飓风和洪水对美国每年的生命和财产造成的巨大影响。该研究将解决当前数据同化(DA)和天气模型不确定性量化的基本局限性。 研究结果将对关注这些天气灾害的多学科努力产生巨大影响,这将导致预测误差的长期持续减少。智力优势:该项目将侧重于1)开发和测试一个先进的DA框架,旨在消除目前在实践中使用的特定假设; 2)采用复杂的不确定性可视化方案,以探索从集合中估计的概率信息;以及3)为马里兰州大学和校外暑期学校的课堂课程开发一个贝叶斯研究和教育模块。该项目将采用基于“粒子过滤器”。 该方法使用模型模拟的样本来表示以当前和过去的观测为条件的模型状态变量的概率特性。除了对粒子滤波器用于天气预测进行最彻底的研究外,该研究还将应用该方法来隔离模型和观测系统中的偏差来源。这项工作的另一个独特之处是它使用了统计学家和计算机科学家开发的新颖的可视化技术。 这些技术形成了一套基于“数据深度”的分析工具,它允许通过轮廓和曲线箱形图对多变量集成输出进行深入的研究。他们还提供了一种方法来验证概率量从合奏没有假设的基本误差分布,从而帮助验证非参数DA技术,如粒子filters.Broader影响:这项研究的动机是直接由危险的天气事件,影响在美国和世界各地的个人的福祉。除了提高数值预测的预测技能外,这项工作的一部分重点是集合数据集的不确定性量化和可视化,旨在改善向公众传达恶劣天气风险。在这项工作中取得的DA进展将致力于国家大气研究中心的数据同化研究测试平台,这是一个将DA研究与地球科学家联系起来的社区软件基础设施。该项目还包括为地球科学学生和研究人员开发一个教育发展援助模块的详细战略。该模块将随着工作计划的发展而发展,并成为课堂练习和暑期学校活动的宝贵学习工具,用于促进STEM领域的多样性。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Statistical Hypothesis Testing Strategy for Adaptively Blending Particle Filters and Ensemble Kalman Filters for Data Assimilation
自适应混合粒子滤波器和集成卡尔曼滤波器进行数据同化的统计假设检验策略
- DOI:10.1175/mwr-d-22-0108.1
- 发表时间:2023
- 期刊:
- 影响因子:3.2
- 作者:Kurosawa, Kenta;Poterjoy, Jonathan
- 通讯作者:Poterjoy, Jonathan
Implications of Multivariate Non-Gaussian Data Assimilation for Multi-scale Weather Prediction
多元非高斯数据同化对多尺度天气预报的影响
- DOI:10.1175/mwr-d-21-0228.1
- 发表时间:2022
- 期刊:
- 影响因子:3.2
- 作者:Poterjoy, Jonathan
- 通讯作者:Poterjoy, Jonathan
Regularization and tempering for a moment‐matching localized particle filter
暂时正则化和回火——匹配局部粒子过滤器
- DOI:10.1002/qj.4328
- 发表时间:2022
- 期刊:
- 影响因子:8.9
- 作者:Poterjoy, Jonathan
- 通讯作者:Poterjoy, Jonathan
Data Assimilation Challenges Posed by Nonlinear Operators: A Comparative Study of Ensemble and Variational Filters and Smoothers
非线性算子带来的数据同化挑战:集成和变分滤波器和平滑器的比较研究
- DOI:10.1175/mwr-d-20-0368.1
- 发表时间:2021
- 期刊:
- 影响因子:3.2
- 作者:Kurosawa, K;Poterjoy, J.
- 通讯作者:Poterjoy, J.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan Poterjoy其他文献
Jonathan Poterjoy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan Poterjoy', 18)}}的其他基金
Online Uncertainty Quantification for Novel Atmospheric Measurements
新型大气测量的在线不确定性量化
- 批准号:
2136969 - 财政年份:2022
- 资助金额:
$ 54.82万 - 项目类别:
Standard Grant
相似国自然基金
Improving modelling of compact binary evolution.
- 批准号:10903001
- 批准年份:2009
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Characterising and improving understanding of mesoscale convective systems over south-east Asia using machine learning
使用机器学习表征和提高对东南亚中尺度对流系统的理解
- 批准号:
2886050 - 财政年份:2023
- 资助金额:
$ 54.82万 - 项目类别:
Studentship
COntinental COnvective OrganisatioN and rainfall intensification in a warming world: Improving storm predictions from hours to decades (COCOON)
变暖世界中的大陆对流组织和降雨强度:将风暴预测从几小时提高到几十年(COCOON)
- 批准号:
NE/X017419/1 - 财政年份:2023
- 资助金额:
$ 54.82万 - 项目类别:
Fellowship
Improving convective storm simulations through scale-adaptive and flow-adaptive sub-grid methods
通过尺度自适应和流量自适应子网格方法改进对流风暴模拟
- 批准号:
2438507 - 财政年份:2020
- 资助金额:
$ 54.82万 - 项目类别:
Studentship
Collaborative Research: Increasing Understanding of 30-60 Sec Resolution Satellite Observations with Respect to Convective Initiation and Improving Microphysical Parameterizations
合作研究:加深对 30-60 秒分辨率卫星观测对对流引发的理解并改进微物理参数化
- 批准号:
1746475 - 财政年份:2018
- 资助金额:
$ 54.82万 - 项目类别:
Continuing Grant
Collaborative Research: Increasing Understanding of 30-60 Sec Resolution Satellite Observations with Respect to Convective Initiation and Improving Microphysical Parameterizations
合作研究:加深对 30-60 秒分辨率卫星观测对对流引发的理解并改进微物理参数化
- 批准号:
1746119 - 财政年份:2018
- 资助金额:
$ 54.82万 - 项目类别:
Continuing Grant
Evaluating and Improving Convection-Permitting Simulations of the Life Cycle of Convective Storms using Polarimetric Radar Data
使用极化雷达数据评估和改进对流风暴生命周期的允许对流模拟
- 批准号:
408026808 - 财政年份:2018
- 资助金额:
$ 54.82万 - 项目类别:
Priority Programmes
Improving the Prediction of Tropical Precipitation using a new Convective Parameterization
使用新的对流参数化改进热带降水的预测
- 批准号:
155649-2012 - 财政年份:2017
- 资助金额:
$ 54.82万 - 项目类别:
Discovery Grants Program - Individual
Understanding and improving convective-scale predictability
理解和提高对流规模的可预测性
- 批准号:
16K17807 - 财政年份:2016
- 资助金额:
$ 54.82万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Improving the Prediction of Tropical Precipitation using a new Convective Parameterization
使用新的对流参数化改进热带降水的预测
- 批准号:
155649-2012 - 财政年份:2015
- 资助金额:
$ 54.82万 - 项目类别:
Discovery Grants Program - Individual
Improving the Prediction of Tropical Precipitation using a new Convective Parameterization
使用新的对流参数化改进热带降水的预测
- 批准号:
155649-2012 - 财政年份:2014
- 资助金额:
$ 54.82万 - 项目类别:
Discovery Grants Program - Individual