COntinental COnvective OrganisatioN and rainfall intensification in a warming world: Improving storm predictions from hours to decades (COCOON)

变暖世界中的大陆对流组织和降雨强度:将风暴预测从几小时提高到几十年(COCOON)

基本信息

  • 批准号:
    NE/X017419/1
  • 负责人:
  • 金额:
    $ 94.32万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Some of the most pressing questions in atmospheric and climate science today focus on how thunderstorms will respond to changes in the atmospheric environment. How will extreme rainfall change with climate change? And how do internal storm processes and dynamics affect these changes? Nowhere is the challenge more urgent than in (sub-)tropical regions where large thunderstorm clusters, so-called Mesoscale Convective Systems (MCSs) frequently cause severe weather and flooding, but population resilience is low due to poverty and staggering economies. To estimate and plan for future storm impacts, we need to understand and model how storm dynamics will respond (and are already responding) to atmospheric changes, and whether there are internal, dynamical mechanisms that may intensify rainfall extremes beyond purely thermodynamical considerations linked to increased moisture in a warmer atmosphere. In most affected regions, MCSs provide crucial water supplies for crops, livestock and people, contributing 50-90% to total rainfall but are likewise associated with severe weather that affects millions around the globe. A situation that will only worsen as temperatures continue to rise. And yet, in spite of the societal importance of MCSs, we still do not know why in particular their sub-daily rainfall extremes can frequently surpass expected intensities. The fact that the relative importance of external (e.g. atmospheric humidity, wind shear, temperature) and internal drivers (storm circulations, updraught speeds and size) of rainfall maxima remain unclear also hampers our ability to estimate global warming effects. Climate model assessments of driver contributions so far do not exist as conventional global climate models with coarse resolutions ~100km have major difficulties representing processes in the MCS scale range, which they can neither explicitly resolve nor satisfactorily parametrise, i.e. they do not 'see' MCSs. Over the last decade however, there have been rapid advances in the use of high-resolution (<10 km) regional convection-permitting (CP) models for climate prediction. Not having to rely on convective parametrisations, CP models produce more realistic peak rainfall intensities even compared to medium-resolution models, and can simulate realistic MCSs. However, even state-of-the-art CP models still operate in the "grey-zone" of 1-10km where internal storm circulations are only partly resolved. Consequences of the neglect of sub-grid processes are still under investigation and shortcomings need to be put under scrutiny.By combining earth observation data with emerging state-of-the-art CP climate model simulations, my project investigates how the scale of convection (contiguous cloud shields, embedded convective core scales, updraught size) affects MCS rainfall extremes and lifetimes over land. Based on earth observation data, my work will discover whether scales of continental convective organisation have changed within the last 20-30 years, and what processes are key to determining such trends. This will also explore whether MCS interactions with land features and atmospheric environments change as a function of convective scale. I will furthermore challenge CP models with the identified processes and develop process-based model benchmarking approaches, testing how trustworthy CP models are in capturing rainfall intensification mechanisms in a future climate. The findings will be used to trial methods for improved storm nowcasting and for improved estimates of future MCS rainfall extremes based on multiple lines of evidence that will crucially include convective scales. Thus, my project will bring a step-change in our understanding of how global warming drives convective scale changes, how rainfall and scales are linked, and whether scale information can improve extreme rainfall predictions on weather to climate timescales.
当今大气和气候科学中一些最紧迫的问题集中在雷暴将如何应对大气环境的变化。极端降雨量将如何随气候变化而变化?内部风暴过程和动力是如何影响这些变化的?这一挑战在(亚)热带地区最为紧迫,在那里,大型雷暴群,即所谓的中尺度对流系统(MCS)经常造成恶劣天气和洪水,但由于贫困和经济停滞不前,人口韧性较低。为了估计和规划未来的风暴影响,我们需要了解风暴动力学将如何响应(以及已经在响应)大气变化,以及是否存在可能加剧极端降雨的内部、动力学机制,而不仅仅是与变暖的大气中水分增加有关的热力学考虑。在受影响最严重的地区,MCSs为农作物、牲畜和人类提供了至关重要的供水,占总降雨量的50%-90%,但同样与影响全球数百万人的恶劣天气有关。随着气温继续上升,这种情况只会变得更糟。然而,尽管MCS具有重要的社会意义,我们仍然不知道为什么它们的次日极端降雨量经常会超过预期强度。降雨最大值的外部驱动因素(如大气湿度、风切变、温度)和内部驱动因素(风暴环流、上升气流速度和大小)的相对重要性仍不清楚,这也阻碍了我们估计全球变暖影响的能力。到目前为止还不存在对驱动因素贡献的气候模式评估,因为粗略分辨率约100公里的传统全球气候模式在描述MCS尺度范围内的过程方面存在重大困难,它们既不能明确解决也不能令人满意地解决参数上升,即它们看不到MCS。然而,在过去十年中,在使用高分辨率(&lt;10公里)区域允许对流(CP)模式进行气候预测方面取得了快速进展。与中分辨率模式相比,CP模式不需要依赖对流参数化,可以产生更逼真的峰值降雨强度,并可以模拟真实的MCS。然而,即使是最先进的CP模式也仍在1-10公里的“灰色地带”运行,在那里内部风暴循环只能得到部分解决。忽略次网格过程的后果仍在调查中,不足之处需要仔细研究。通过将地球观测数据与新兴的CP气候模式模拟相结合,本项目调查了对流的尺度(连续云屏、嵌入的对流核心尺度、上升气流大小)如何影响陆地上的MCS降雨极值和生存时间。基于地球观测数据,我的工作将发现大陆对流组织的规模在过去20-30年内是否发生了变化,以及哪些过程是决定这种趋势的关键。这也将探索MCS与陆地特征和大气环境的相互作用是否随着对流尺度的变化而变化。我将进一步用已确定的过程挑战CP模型,并开发基于过程的模型基准方法,测试CP模型在捕捉未来气候中的降雨强化机制方面的可信度。这些发现将被用于试验改进风暴短时预报的方法,并基于关键包括对流尺度的多条证据改进对未来MCS降雨极端值的估计。因此,我的项目将使我们对全球变暖如何驱动对流尺度变化、降雨和尺度如何联系以及尺度信息是否可以改进对天气和气候时间尺度的极端降雨预测的理解发生阶段性变化。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Cornelia Klein其他文献

Soil moisture gradients strengthen mesoscale convective systems by increasing wind shear
土壤湿度梯度通过增加风切变来加强中尺度对流系统。
  • DOI:
    10.1038/s41561-025-01666-8
  • 发表时间:
    2025-04-04
  • 期刊:
  • 影响因子:
    16.100
  • 作者:
    Emma J. Barton;Cornelia Klein;Christopher M. Taylor;John Marsham;Douglas J. Parker;Ben Maybee;Zhe Feng;L. Ruby Leung
  • 通讯作者:
    L. Ruby Leung

Cornelia Klein的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Cornelia Klein', 18)}}的其他基金

UMBRELLA - UM Boundary Layer Representation including land-atmosphere interactions
UMBRELLA - UM 边界层表示,包括陆地-大气相互作用
  • 批准号:
    NE/X018520/1
  • 财政年份:
    2023
  • 资助金额:
    $ 94.32万
  • 项目类别:
    Research Grant

相似海外基金

Collaborative Research: AGS-FIRP Track 2--Process Investigation of Clouds and Convective Organization over the atLantic Ocean (PICCOLO)
合作研究:AGS-FIRP Track 2——大西洋上空云和对流组织的过程调查(PICCOLO)
  • 批准号:
    2331199
  • 财政年份:
    2024
  • 资助金额:
    $ 94.32万
  • 项目类别:
    Continuing Grant
Collaborative Research: AGS-FIRP Track 2--Process Investigation of Clouds and Convective Organization over the atLantic Ocean (PICCOLO)
合作研究:AGS-FIRP Track 2——大西洋上空云和对流组织的过程调查(PICCOLO)
  • 批准号:
    2331200
  • 财政年份:
    2024
  • 资助金额:
    $ 94.32万
  • 项目类别:
    Continuing Grant
Collaborative Research: Convective Processes in the Tropics Across Scales
合作研究:热带地区跨尺度的对流过程
  • 批准号:
    2326631
  • 财政年份:
    2024
  • 资助金额:
    $ 94.32万
  • 项目类别:
    Standard Grant
Collaborative Research: AGS-FIRP Track 2--Process Investigation of Clouds and Convective Organization over the atLantic Ocean (PICCOLO)
合作研究:AGS-FIRP Track 2——大西洋上空云和对流组织的过程调查(PICCOLO)
  • 批准号:
    2331202
  • 财政年份:
    2024
  • 资助金额:
    $ 94.32万
  • 项目类别:
    Continuing Grant
Collaborative Research: Convective Processes in the Tropics Across Scales
合作研究:热带地区跨尺度的对流过程
  • 批准号:
    2326632
  • 财政年份:
    2024
  • 资助金额:
    $ 94.32万
  • 项目类别:
    Standard Grant
Collaborative Research: Examining Cloud-Radiation Feedback at Convective Scales in Tropical Cyclones
合作研究:检查热带气旋对流尺度的云辐射反馈
  • 批准号:
    2331121
  • 财政年份:
    2023
  • 资助金额:
    $ 94.32万
  • 项目类别:
    Continuing Grant
CAREER: Solute Transport Coupled to Geomechanics and Convective Mixing
职业:溶质输运与地质力学和对流混合的耦合
  • 批准号:
    2240048
  • 财政年份:
    2023
  • 资助金额:
    $ 94.32万
  • 项目类别:
    Continuing Grant
Characterising and improving understanding of mesoscale convective systems over south-east Asia using machine learning
使用机器学习表征和提高对东南亚中尺度对流系统的理解
  • 批准号:
    2886050
  • 财政年份:
    2023
  • 资助金额:
    $ 94.32万
  • 项目类别:
    Studentship
Study on liquid water content fluctuation in high Reynolds number turbulence with large-scale mixing in convective clouds
对流云大尺度混合高雷诺数湍流中液态水含量波动研究
  • 批准号:
    23K03686
  • 财政年份:
    2023
  • 资助金额:
    $ 94.32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Rapid-scan Polarimetric Radar Data Collection and Analysis of the Wind Field in Severe Convective Storms and Tornadoes
强对流风暴和龙卷风风场的快速扫描偏振雷达数据采集和分析
  • 批准号:
    2214926
  • 财政年份:
    2023
  • 资助金额:
    $ 94.32万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了