S&AS: FND: Uncertainty-Aware Safe Deep Reinforcement Learning

S

基本信息

  • 批准号:
    1849154
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-04-01 至 2023-03-31
  • 项目状态:
    已结题

项目摘要

Robot designers cannot always anticipate all real-world eventualities; hence robots will need to use algorithms that can learn to adapt to unexpected changes in their environment. However, if robots are to learn and adapt in the real world, they must adapt in ways that continue to maintain safety while learning. This project develops methods that ensure that robots continue to be safe even as they learn and adapt to unexpected changes in their environment. By enabling robots to be cognizant of their uncertainty, these methods can help robots operate more safely. Further, the methods will enable robots to be adaptive to unforeseen changes in their environment. These methods will be applied to autonomous driving, to enable robots to operate safely on surfaces with different levels of friction or on uneven terrain that might otherwise be unsafe to operate on. Such methods will enable safer autonomous vehicles for city driving in poor weather conditions, as well as for operating in off-road settings for search and rescue operations, patrol vehicles to detect animal poachers, and for other applications.This research develops a set of methods for uncertainty-aware safe robot learning. These methods will enable a robot to estimate the uncertainty of the effect of its actions; based on the estimated uncertainty, the robot will determine how to improve its performance while operating safely and cautiously. Furthermore, these methods will use the estimated uncertainty to determine how the robot should adapt its parameters to efficiently respond to environmental changes. The methods in this project will operate on complex policy classes such as those represented by neural networks trained with deep reinforcement learning. Such an approach will enable robots to achieve safe and adaptive long-term autonomy.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机器人设计师不可能总是预测到所有现实世界的可能性,因此机器人需要使用能够学习适应环境中意外变化的算法。但是,如果机器人要在真实的世界中学习和适应,它们必须以在学习的同时继续保持安全的方式进行适应。 该项目开发了确保机器人持续安全的方法,即使它们学习和适应环境中的意外变化。通过使机器人能够认识到它们的不确定性,这些方法可以帮助机器人更安全地操作。此外,这些方法将使机器人能够适应环境中不可预见的变化。这些方法将应用于自动驾驶,使机器人能够在摩擦力不同的表面或不平坦的地形上安全运行,否则可能不安全。这些方法将使自动驾驶车辆在恶劣天气条件下的城市驾驶更加安全,以及在越野环境中进行搜索和救援行动,巡逻车辆检测动物偷猎者,本研究发展了一套不确定性感知的安全机器人学习方法。这些方法将使机器人能够估计其动作效果的不确定性;基于估计的不确定性,机器人将确定如何在安全和谨慎操作的同时提高其性能。此外,这些方法将使用估计的不确定性来确定机器人应该如何调整其参数以有效地响应环境变化。该项目中的方法将在复杂的策略类上运行,例如由深度强化学习训练的神经网络所代表的策略类。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(32)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
TAX-Pose: Task-Specific Cross-Pose Estimation for Robot Manipulation
  • DOI:
    10.48550/arxiv.2211.09325
  • 发表时间:
    2022-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chuer Pan;Brian Okorn;Harry Zhang;Ben Eisner;David Held
  • 通讯作者:
    Chuer Pan;Brian Okorn;Harry Zhang;Ben Eisner;David Held
Learning Off-policy for Online Planning
在线规划的离线学习
Planning with Spatial and Temporal Abstraction from Point Clouds for Deformable Object Manipulation
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xingyu Lin;Carl Qi;Yunchu Zhang;Zhiao Huang;Katerina Fragkiadaki;Yunzhu Li;Chuang Gan;David Held
  • 通讯作者:
    Xingyu Lin;Carl Qi;Yunchu Zhang;Zhiao Huang;Katerina Fragkiadaki;Yunzhu Li;Chuang Gan;David Held
Deep Projective Rotation Estimation through Relative Supervision
  • DOI:
    10.48550/arxiv.2211.11182
  • 发表时间:
    2022-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Brian Okorn;Chuer Pan;M. Hebert;David Held
  • 通讯作者:
    Brian Okorn;Chuer Pan;M. Hebert;David Held
Self-Supervised Point Cloud Completion via Inpainting
  • DOI:
  • 发表时间:
    2021-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Himangi Mittal;Brian Okorn;Arpit Jangid;David Held
  • 通讯作者:
    Himangi Mittal;Brian Okorn;Arpit Jangid;David Held
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Held其他文献

Democracy: From City-states to a Cosmopolitan Order?
民主:从城邦到世界秩序?
  • DOI:
    10.1111/j.1467-9248.1992.tb01810.x
  • 发表时间:
    1992
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Held
  • 通讯作者:
    David Held
Differentiable Raycasting for Self-supervised Occupancy Forecasting
用于自监督占用预测的可微分光线投射
  • DOI:
    10.48550/arxiv.2210.01917
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Tarasha Khurana;Peiyun Hu;Achal Dave;Jason Ziglar;David Held;Deva Ramanan
  • 通讯作者:
    Deva Ramanan
Globalización/antiglobalización: sobre la reconstrucción del orden mundial
全球化/反全球化:世界秩序的重建
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Held;Anthony McGrew
  • 通讯作者:
    Anthony McGrew
Democracy and the Global Order: From the Modern State to Cosmopolitan Governance
民主与全球秩序:从现代国家到世界主义治理
  • DOI:
    10.2307/20047664
  • 发表时间:
    1995
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Held
  • 通讯作者:
    David Held
Souveraineté, démocratie et gouvernance mondiale chez
世界主权、民主和治理
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Held;Martin Bossé
  • 通讯作者:
    Martin Bossé

David Held的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Held', 18)}}的其他基金

CAREER: Self-supervised Representation Learning for Deformable Object Manipulation
职业:可变形物体操纵的自监督表示学习
  • 批准号:
    2046491
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant

相似国自然基金

Novosphingobium sp. FND-3降解呋喃丹的分子机制研究
  • 批准号:
    31670112
  • 批准年份:
    2016
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目

相似海外基金

Movement perception in Functional Neurological Disorder (FND)
功能性神经疾病 (FND) 的运动感知
  • 批准号:
    MR/Y004000/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
NRI: FND: Collaborative Research: DeepSoRo: High-dimensional Proprioceptive and Tactile Sensing and Modeling for Soft Grippers
NRI:FND:合作研究:DeepSoRo:软抓手的高维本体感受和触觉感知与建模
  • 批准号:
    2348839
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
S&AS: FND: COLLAB: Planning and Control of Heterogeneous Robot Teams for Ocean Monitoring
S
  • 批准号:
    2311967
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
NRI: FND: Collaborative Research: DeepSoRo: High-dimensional Proprioceptive and Tactile Sensing and Modeling for Soft Grippers
NRI:FND:合作研究:DeepSoRo:软抓手的高维本体感受和触觉感知与建模
  • 批准号:
    2024882
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
NRI: FND: Collaborative Research: DeepSoRo: High-dimensional Proprioceptive and Tactile Sensing and Modeling for Soft Grippers
NRI:FND:合作研究:DeepSoRo:软抓手的高维本体感受和触觉感知与建模
  • 批准号:
    2024646
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
NRI: FND: Foundations for Physical Co-Manipulation with Mixed Teams of Humans and Soft Robots
NRI:FND:人类和软机器人混合团队物理协同操作的基础
  • 批准号:
    2024792
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
NRI: FND: Foundations for Physical Co-Manipulation with Mixed Teams of Humans and Soft Robots
NRI:FND:人类和软机器人混合团队物理协同操作的基础
  • 批准号:
    2024670
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
NRI: FND: Natural Power Transmission through Unconstrained Fluids for Robotic Manipulation
NRI:FND:通过不受约束的流体进行自然动力传输,用于机器人操作
  • 批准号:
    2024409
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
NRI: FND: Multi-Manipulator Extensible Robotic Platforms
NRI:FND:多机械手可扩展机器人平台
  • 批准号:
    2024435
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: NRI: FND: Flying Swarm for Safe Human Interaction in Unstructured Environments
合作研究:NRI:FND:用于非结构化环境中安全人类互动的飞群
  • 批准号:
    2024615
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了