Collaborative Research: Hydrothermal Estuaries: What Sets the Hydrothermal Flux of Fe and Mn to the Oceans?
合作研究:热液河口:是什么决定了铁和锰进入海洋的热液通量?
基本信息
- 批准号:1851007
- 负责人:
- 金额:$ 38.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Like volcanoes on land, the mid-ocean ridges that cross the ocean floor are not continuously erupting; however, the magmatic heat present just beneath the surface can continue to drive hot springs, just like the ones found within the crater of the "super volcano" at Yellowstone. In our recent work, we have shown that the chemicals released into the oceans from seafloor hot-springs can be dispersed all across the oceans. Now our interest has focused in on one element in particular, iron. This is one of the most abundant elements in every planetary body in the Universe yet it is vanishingly rare in Earth's oceans today. Set against that, it is essential to just about every form of life on Earth from the simplest and most ancient strains of microbes to the most complex animals including humans. In Earth's oceans, the lack of this "essential micro-nutrient" has been found to limit how much life can flourish near both the south and north poles in the Pacific Ocean in the sunlit surface ocean even though the supply of sunlight and other major nutrients (phosphorous, nitrogen) should be more than adequate. Our newest research suggests that iron released from hydrothermal plumes (where the concentrations coming from vents are more than 1 million times higher than normal ocean water) could play a major role. Despite undergoing massive dilution as hydrothermal solutions leave the vents and traverse thousands of kilometers through the oceans, we believe that at least some of the iron released from deep sea hot springs can survive this journey and make a significant impact on how much live exists in Earth's polar oceans and how much CO2 it draws down from the atmosphere. To investigate that idea, this project will study the fate of iron released from a hydrothermal vent over a length scale that hasn't been studied before - from the first 1km through the ocean out to 100km away from the vent-site. This will fill a gap in our knowledge between what happens right at a vent-site (as studied by research submarines) and what happens to ocean chemistry all across Earth's entire ocean basins (as studied by a huge international research project called GEOTRACES). Our work will use a 3D computational model to predict where the plume of material from a vent in the Northeast Pacific Ocean should escape to after it is erupted from some vents at a volcanic system called the Juan de Fuca Ridge. We will then use an advanced autonomous free-swimming robot to search out in the predicted plume area, first to test the accuracy of our predicted model and, second, to collect samples from the hydrothermal plume from where it first forms to as far out as we can follow it. The samples we collect will include both filtered seawater and the particulate material (whether mineralogical or microbiological) that we can extract from the filters. Together, this will allow us to track the fate of the iron and other key physical and geochemical tracers down-plume away from the vents, to work out where it ends up (in the water and in the sediments) and also how fast those processes happen. The work we do will also help plan how to conduct similar robotics-based exploration on future space missions beyond Earth where it has been hypothesized that seafloor events also exist (e.g. Saturn's moon Enceladus) and where, if we are really lucky, we may find that life is hosted based on the energy from seafloor volcanoes, just as happens here on Earth. We have a resident artist embedded in our program who has already begun experimenting with the use of air-flow and sound in her sculptures to help communicate the complex nature of these plumes. She will join our cruise, and work with our team post-cruise to design and hopefully build a sculpture that that could potentially result in a large and long-term outdoor installation. The international GEOTRACES program has revealed that iron (Fe) is released ubiquitously from submarine ridges to the deep ocean. Results from US GEOTRACES section GP16 showed that both dissolved and particulate (colloidal) Fe may persist so far as to be able to influence primary productivity in High-Nutrient/Low-Chlorophyll (HNLC) regions of the Southern Ocean. As a complement to these sectional studies, we propose a detailed process study to elucidate the mechanisms by which hydrothermally sourced Fe can persist across the oceans at the scale that GEOTRACES has revealed. Specifically, while the "persistent" Fe in a hydrothermal plume appears to behave quasi-conservatively from 100km to 4000km across the SE Pacific Ocean, it is also known that the majority of the Fe present at the Southern EPR on that US GEOTRACES GP16 cruise did not persist over the 100km separation between that station and the next deep ocean station beyond the ridge crest. To fill that gap, this project will conduct a coupled modelling and field study to investigate the fate of hydrothermally sourced Fe at ranges of 0-1, 1-10 and 10-100km down-plume away from a well established vent-source. To begin, we will use the detailed micro-bathymetry and the long-term current meter data available from the Main Endeavour Segment of the Juan de Fuca Ridge to implement a recently developed 3D theoretical plume dispersion model that can predict both the detailed 3D dispersion trajectory and the rate of flow within the hydrothermal plume away from two long-studied and well characterized Main Endeavour Field (MEF) vents. At sea, we will use that predictive model to guide Sentry autonomous underwater vehicle (AUV) surveys that will follow the plume "down-wind" and "across-plume" to compile a 3D survey using in-situ sensors [optical, redox, conductivity, temperature, depth (CTD)] that will allow us to (1) confirm (and better constrain) the predictive model, and to (2) map out the shape and trajectory of the plume to provide context for discrete water column samples that we will collect - both from the AUV and from a trace metal clean CTD-rosette. Sampling from the AUV will use the latest generation of SUPR samplers designed for the CLIO trace-metal-clean water sampler. This will suffice for samples of dissolved, colloidal and particulate trace metals and collection of filtered material for grain-by-grain mineralogical and biogeochemical analyses. That sampling program will be backed up by larger volume sampling down-plume using a CTD-rosette to augment our AUV-based program with helium isotope analyses (to track extents of physical plume dilution at increasing distances downwind and across plume) and for complementary ligand and organic compound analyses to investigate the role that organic complexation might play in protecting reduced species of Fe [and manganese (Mn), too] against oxidative precipitation and removal from the oceanic water column. Post cruise, our combination of biogeochemical measurements and improved 3D physical modelling will not only be able to provide new insights into the processes that control the fluxes of Fe and Mn to the oceans from hydrothermal venting but also the length scales over which those processes take effect. Finally, because our 3D theoretical model includes velocities, we also anticipate being able to deduce the rates at which these processes occur.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chris German其他文献
Bubbling under
即将崭露头角
- DOI:
10.1038/415124a - 发表时间:
2002-01-10 - 期刊:
- 影响因子:48.500
- 作者:
Chris German - 通讯作者:
Chris German
Ocean System Science to Inform the Exploration of Ocean Worlds
海洋系统科学为海洋世界的探索提供信息
- DOI:
10.5670/oceanog.2021.411 - 发表时间:
2022 - 期刊:
- 影响因子:2.8
- 作者:
Chris German;D. Blackman;Andrew S. Fisher;P. Girguis;K. Hand;T. Hoehler;Julie Huber;J. Marshall;K. Pietro;J. Seewald;E. Shock;C. Sotin;A. Thurnherr;B. Toner - 通讯作者:
B. Toner
Detachment-parallel recharge explains high discharge fluxes at the TAG hydrothermal field
分离平行补给解释了 TAG 热液田的高排放通量
- DOI:
10.21203/rs.3.rs-1030743/v1 - 发表时间:
2021 - 期刊:
- 影响因子:5.3
- 作者:
L. Rüpke;Zhikui Guo;S. Petersen;Chris German;B. Ildefonse;J. Hasenclever;J. Bialas;C. Tao - 通讯作者:
C. Tao
Chris German的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chris German', 18)}}的其他基金
Collaborative Research: US GEOTRACES GP17-OCE and GP17-ANT: Properties and processes impacting other trace element and isotope cycles using noble gas and stable isotope tracers
合作研究:US GEOTRACES GP17-OCE 和 GP17-ANT:使用惰性气体和稳定同位素示踪剂影响其他微量元素和同位素循环的特性和过程
- 批准号:
2148626 - 财政年份:2022
- 资助金额:
$ 38.22万 - 项目类别:
Continuing Grant
EAGER: Collaborative Research: Has Recent Tectono-Magmatic Activity at Lō'ihi (Kama’ehuakanaloa) Seamount perturbed vent-fluid circulation and hydrothermal Fe export to the oce
EAGER:合作研究:LÅihi (Kamaâehuakanaloa)海山最近的构造岩浆活动扰动了喷口流体循环和热液铁向海洋的输出
- 批准号:
2221282 - 财政年份:2022
- 资助金额:
$ 38.22万 - 项目类别:
Standard Grant
Collaborative Research: Are Low-Temperature Hydrothermal Vents an Important but Overlooked Source of Stabilized Dissolved Iron to the Ocean?
合作研究:低温热液喷口是否是海洋稳定溶解铁的重要但被忽视的来源?
- 批准号:
1755571 - 财政年份:2018
- 资助金额:
$ 38.22万 - 项目类别:
Standard Grant
Measurement of Helium Isotopes on the U.S. GEOTRACES Alaska-Tahiti Section (GP15)
美国 GEOTRACES 阿拉斯加-塔希提段 (GP15) 的氦同位素测量
- 批准号:
1756138 - 财政年份:2018
- 资助金额:
$ 38.22万 - 项目类别:
Continuing Grant
Collaborative Research: Suspended particle geochemistry along the US GEOTRACES Eastern Pacific Zonal Transect, from high productivity ocean margin to deep sea hydrothermal plume
合作研究:沿美国 GEOTRACES 东太平洋纬向断面的悬浮颗粒地球化学,从高产海洋边缘到深海热液羽流
- 批准号:
1235248 - 财政年份:2013
- 资助金额:
$ 38.22万 - 项目类别:
Standard Grant
INSPIRE Track 1: Collaborative Research: Transforming Remotely-conducted Research through Ethnography, Education and Rapidly-Evolving Technologies
INSPIRE 轨道 1:协作研究:通过民族志、教育和快速发展的技术转变远程研究
- 批准号:
1344250 - 财政年份:2013
- 资助金额:
$ 38.22万 - 项目类别:
Continuing Grant
Collaborative Research: Management and Implementation of US GEOTRACES Eastern Pacific Zonal Transect
合作研究:美国GEOTRACES东太平洋地带样带的管理和实施
- 批准号:
1130870 - 财政年份:2012
- 资助金额:
$ 38.22万 - 项目类别:
Standard Grant
RAPID: Time Series Sampling for Radionuclide and Biogeochemical Fluxes at F1 Time-series Station, Offshore Fukushima Dai-ichi Nuclear Power Facility
RAPID:福岛第一核电站海上 F1 时间序列站放射性核素和生物地球化学通量的时间序列采样
- 批准号:
1139902 - 财政年份:2011
- 资助金额:
$ 38.22万 - 项目类别:
Standard Grant
Collaborative Research: Venting Outside the Box - Extending the Known Limits to Seafloor Hydrothermal Circulation and the Chemosynthetic Life it Supports
合作研究:开箱即用的通风——扩展海底热液循环及其支持的化学合成生命的已知极限
- 批准号:
1061863 - 财政年份:2011
- 资助金额:
$ 38.22万 - 项目类别:
Continuing Grant
RAPID Response in Gulf of Mexico: Sediment Trap Investigations
墨西哥湾的快速响应:沉积物收集器调查
- 批准号:
1044289 - 财政年份:2010
- 资助金额:
$ 38.22万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: The interplay of surface evolution, shallow magmatism, a large hydrothermal system, and hazards at Puyehue-Cordon Caulle Volcanic Complex, Chile
合作研究:智利 Puyehue-Cordon Caulle 火山群地表演化、浅层岩浆作用、大型热液系统和灾害的相互作用
- 批准号:
2317729 - 财政年份:2023
- 资助金额:
$ 38.22万 - 项目类别:
Continuing Grant
Collaborative Research: The interplay of surface evolution, shallow magmatism, a large hydrothermal system, and hazards at Puyehue-Cordon Caulle Volcanic Complex, Chile
合作研究:智利 Puyehue-Cordon Caulle 火山群地表演化、浅层岩浆作用、大型热液系统和灾害的相互作用
- 批准号:
2317732 - 财政年份:2023
- 资助金额:
$ 38.22万 - 项目类别:
Continuing Grant
Collaborative Research: The interplay of surface evolution, shallow magmatism, a large hydrothermal system, and hazards at Puyehue-Cordon Caulle Volcanic Complex, Chile
合作研究:智利 Puyehue-Cordon Caulle 火山群地表演化、浅层岩浆作用、大型热液系统和灾害的相互作用
- 批准号:
2317731 - 财政年份:2023
- 资助金额:
$ 38.22万 - 项目类别:
Continuing Grant
Collaborative Research: Microbes need frenemies: unveiling microbial relationships with protists and viruses that support deep-sea hydrothermal vent food webs
合作研究:微生物需要亦敌亦友:揭示微生物与支持深海热液喷口食物网的原生生物和病毒的关系
- 批准号:
2327203 - 财政年份:2023
- 资助金额:
$ 38.22万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: GASHES: Getz Antarctic Submarine Hydrothermal Vents Exploratory Study
合作研究:EAGER:GASHES:Getz 南极海底热液喷口探索性研究
- 批准号:
2303978 - 财政年份:2023
- 资助金额:
$ 38.22万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: GASHES: Getz Antarctic Submarine Hydrothermal Vents Exploratory Study
合作研究:EAGER:GASHES:Getz 南极海底热液喷口探索性研究
- 批准号:
2303979 - 财政年份:2023
- 资助金额:
$ 38.22万 - 项目类别:
Standard Grant
Collaborative Research: The interplay of surface evolution, shallow magmatism, a large hydrothermal system, and hazards at Puyehue-Cordon Caulle Volcanic Complex, Chile
合作研究:智利 Puyehue-Cordon Caulle 火山群地表演化、浅层岩浆作用、大型热液系统和灾害的相互作用
- 批准号:
2317730 - 财政年份:2023
- 资助金额:
$ 38.22万 - 项目类别:
Continuing Grant
Collaborative Research: The interplay of surface evolution, shallow magmatism, a large hydrothermal system, and hazards at Puyehue-Cordon Caulle Volcanic Complex, Chile
合作研究:智利 Puyehue-Cordon Caulle 火山群地表演化、浅层岩浆作用、大型热液系统和灾害的相互作用
- 批准号:
2317733 - 财政年份:2023
- 资助金额:
$ 38.22万 - 项目类别:
Continuing Grant
Collaborative Research: ERASE-PFAS: Hydrothermal Treatment as a Strategy for Simultaneous PFAS Destruction and Recovery of Energy and Nutrients from Wastewater Residual Solids
合作研究:ERASE-PFAS:水热处理作为同时破坏 PFAS 并从废水残留固体中回收能量和养分的策略
- 批准号:
2207191 - 财政年份:2022
- 资助金额:
$ 38.22万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: Has Recent Tectono-Magmatic Activity at Loihi (Kamaehuakanaloa) Seamount perturbed vent-fluid circulation and hydrothermal Fe export to the ocean?
EAGER:合作研究:洛伊希 (Kamaehuakanaloa) 海山最近的构造岩浆活动是否扰动了喷口流体循环和热液铁向海洋的输出?
- 批准号:
2220821 - 财政年份:2022
- 资助金额:
$ 38.22万 - 项目类别:
Standard Grant