EAGER: Collaborative Research: Has Recent Tectono-Magmatic Activity at Lō'ihi (Kama’ehuakanaloa) Seamount perturbed vent-fluid circulation and hydrothermal Fe export to the oce

EAGER:合作研究:LÅihi (Kamaâehuakanaloa)海山最近的构造岩浆活动扰动了喷口流体循环和热液铁向海洋的输出

基本信息

  • 批准号:
    2221282
  • 负责人:
  • 金额:
    $ 24.07万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-06-01 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

Has Recent Tectono-Magmatic Activity at Lōʻihi (Kamaʻehuakanaloa) Seamount perturbed vent-fluid circulation and hydrothermal Fe export to the ocean?Like volcanoes on land, submarine volcanoes are not continuously erupting but can remain dormant for long periods. Even while dormant, however, the magmatic heat present beneath a volcano’s surface can continue to drive hot springs in between eruptions. The focus of this study is hot springs at the Kamaʻehuakanaloa underwater volcano (previously known as Lōʻihi), situated about 30 miles south of the Big Island of Hawai’i which last erupted in 1996. Prior studies between the mid 2000’s and late 2010’s have shown that the multiple hot-springs associated with that last eruption, at the summit of the volcano have been cooling down continuously. This study will investigate whether two sets of recent earthquakes at Kamaʻehuakanaloa may have altered that cooling trend. In May 2020 earthquakes associated with magma intrusion into the chamber deep within the seamount were detected. In 1996 earthquakes similar to this accompanied a volcanic eruption. More recently still, in December 2021 the strongest earthquakes of any kind since the 1996 eruption were detected. This project will use a deep-diving robot to investigate whether lava was erupted on the seafloor during these earthquakes and also if the composition of the fluids (chemically altered seawater) flowing out of the seafloor at the volcano’s summit has changed.The Lōʻihi seamount (recently renamed Kamaʻehuakanaloa) last erupted in 1996, significantly reshaping its summit and creating three collapse pits. Inside one of these, Pele’s Pit, hot springs have been studied which exhibited temperatures in excess of 200°C immediately post-eruption. Since 2006, however, the multiple sites that have been subject to long-term study within Pele’s Pit and around its rim have shown more modest temperatures of 15-55°C which, further, have exhibited progressive cooling at a rate of 1-2°C over a 12-year period from 2006 to 2018 (the most recent year for which time-series data exist). Thermodynamic modeling of the fluids collected in 2018 has provided new insight that the subsurface hydrothermal circulation within this steep sided seamount may extend much deeper than is typical at mid-ocean ridges (which are more elongate and exhibit shallower-sloping ridge flanks). Further, a geochemical consequence of Lōʻihi’s unusual circulation pattern may account for the unusually Fe-rich nature of the vent-fluids emerging from the seafloor at this intra-plate setting, and their impact on the surrounding ocean, when compared to mid-ocean ridges vents. This project will extend the 2006-2018 time-series of vent studies at Lōʻihi to investigate whether the subsurface hydrothermal circulation system has been perturbed by two significant episodes of seismicity that have subsequently occurred, as detected by the US Geological Survey’s Hawai’i Volcano Observatory. In May 2020, a swarm of earthquakes was detected that were distinctive compared to all seismic activity since the volcano last erupted in May 1996 because they exhibited T-phase activity, recognized as being diagnostic of magmatic fluids migrating within the interior of the seamount and potentially indicative of magma replenishment. In December 2021, an even more pronounced episode of seismicity was detected, up to magnitude M4.9, which matched the strongest earthquakes detected during the 1996 eruptions. This project will use the ROV Jason to investigate whether the seafloor hydrothermal venting at Lōʻihi has been perturbed following these episodes of seismicity. The project will test the hypothesis that the earthquakes, detected by T-phase seismic signals, perturbed the deep hydrothermal circulation cell at Lōʻihi, which in turn should be detectable at the seafloor through changes in vent-fluid temperatures and geochemical compositions. Changes in seafloor morphology and locations of vent-sites compared to the previous ROV dives in 2018 may also be expected. Conversely, the null hypothesis would be that the vent-sites that have been studied since 2006 continue to cool progressively (each vent should then be 6±2°C cooler than when last studied in 2018) with compositions that will have changed accordingly. Importantly, proving this null hypothesis would still be scientifically valuable. It would extend the longest time series available for any intra-plate hydrothermal field worldwide and continue to collect pre-event data in anticipation of future extrusive volcanism at Lōʻihi that will occur.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
最近的构造-岩浆活动是否干扰了夏威夷海山的喷流循环和热液铁向海洋的输出?像陆地上的火山一样,海底火山不是持续喷发,而是可以长时间处于休眠状态。然而,即使在休眠期间,火山表面下存在的岩浆热量也会在喷发之间继续推动温泉。这项研究的重点是位于夏威夷大岛以南约30英里处的Kama hawehuakanaloa水下火山的温泉(以前被称为lki hawihi),该火山上一次喷发是在1996年。在2000年代中期到2010年代后期之间的先前研究表明,火山顶部与最后一次喷发有关的多个温泉一直在不断冷却。这项研究将调查最近发生在卡马阿瓦卡analoa的两组地震是否改变了这种冷却趋势。2020年5月,与岩浆侵入海山深处的岩浆室有关的地震被探测到。1996年,类似的地震伴随着火山爆发。最近,在2021年12月,人们发现了自1996年火山喷发以来最强烈的地震。这个项目将使用一个深潜机器人来调查在这些地震中海底是否爆发了熔岩,以及从火山山顶流出的流体(化学改变的海水)的成分是否发生了变化。lki - ihi海山(最近更名为Kama - ehuakanaloa)上一次喷发是在1996年,那次喷发极大地改变了它的峰顶,并造成了三个塌陷坑。在其中的贝利坑(Pele’s Pit)里,人们研究过的温泉在喷发后立即显示出超过200°C的温度。然而,自2006年以来,对贝利坑内及其边缘的多个地点进行的长期研究显示,温度更为温和,为15-55°C,而且,在2006年至2018年(有时间序列数据的最近年份)的12年期间,温度以1-2°C的速度逐渐冷却。2018年收集的流体的热力学模型提供了新的见解,即这个陡峭的海山内的地下热液循环可能比典型的海洋中脊(更细长,呈现出较浅的倾斜脊翼)延伸得更深。此外,与洋中脊喷口相比,夏威夷不寻常的环流模式的地球化学结果可能解释了在这种板块内环境下从海底冒出的喷口流体不寻常的富铁性质,以及它们对周围海洋的影响。该项目将延长2006-2018年在夏威夷岛进行的火山口研究时间序列,以调查地下热液循环系统是否受到随后发生的两次重大地震活动的干扰,正如美国地质调查局夏威夷火山观测站所探测到的那样。2020年5月,与1996年5月火山最后一次喷发以来的所有地震活动相比,发现了一群地震,因为它们表现出t相活动,被认为是海山内部岩浆流体迁移的诊断,可能表明岩浆补充。2021年12月,探测到一次更为明显的地震活动,震级高达4.9级,与1996年火山喷发期间探测到的最强地震相匹配。该项目将使用ROV Jason来调查lhi的海底热液喷口是否在这些地震活动事件后受到干扰。该项目将测试一种假设,即通过t相地震信号检测到的地震扰乱了lki - ihi的深层热液循环细胞,而反过来,通过喷口流体温度和地球化学成分的变化,海底应该可以检测到这种循环细胞。与之前的ROV潜水相比,预计2018年海底形态和喷口位置也会发生变化。相反,零假设是,自2006年以来研究的喷口位置继续逐渐冷却(每个喷口届时应比2018年最后一次研究时冷却6±2°C),其成分将相应发生变化。重要的是,证明这个零假设仍然具有科学价值。它将延长世界范围内任何板块内热液场可用的最长时间序列,并继续收集事件前数据,以预测未来在夏威夷将发生的喷发性火山活动。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chris German其他文献

Bubbling under
即将崭露头角
  • DOI:
    10.1038/415124a
  • 发表时间:
    2002-01-10
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Chris German
  • 通讯作者:
    Chris German
Ocean System Science to Inform the Exploration of Ocean Worlds
海洋系统科学为海洋世界的探索提供信息
  • DOI:
    10.5670/oceanog.2021.411
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Chris German;D. Blackman;Andrew S. Fisher;P. Girguis;K. Hand;T. Hoehler;Julie Huber;J. Marshall;K. Pietro;J. Seewald;E. Shock;C. Sotin;A. Thurnherr;B. Toner
  • 通讯作者:
    B. Toner
Detachment-parallel recharge explains high discharge fluxes at the TAG hydrothermal field
分离平行补给解释了 TAG 热液田的高排放通量
  • DOI:
    10.21203/rs.3.rs-1030743/v1
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    L. Rüpke;Zhikui Guo;S. Petersen;Chris German;B. Ildefonse;J. Hasenclever;J. Bialas;C. Tao
  • 通讯作者:
    C. Tao

Chris German的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chris German', 18)}}的其他基金

Collaborative Research: US GEOTRACES GP17-OCE and GP17-ANT: Properties and processes impacting other trace element and isotope cycles using noble gas and stable isotope tracers
合作研究:US GEOTRACES GP17-OCE 和 GP17-ANT:使用惰性气体和稳定同位素示踪剂影响其他微量元素和同位素循环的特性和过程
  • 批准号:
    2148626
  • 财政年份:
    2022
  • 资助金额:
    $ 24.07万
  • 项目类别:
    Continuing Grant
Collaborative Research: Hydrothermal Estuaries: What Sets the Hydrothermal Flux of Fe and Mn to the Oceans?
合作研究:热液河口:是什么决定了铁和锰进入海洋的热液通量?
  • 批准号:
    1851007
  • 财政年份:
    2019
  • 资助金额:
    $ 24.07万
  • 项目类别:
    Standard Grant
Collaborative Research: Are Low-Temperature Hydrothermal Vents an Important but Overlooked Source of Stabilized Dissolved Iron to the Ocean?
合作研究:低温热液喷口是否是海洋稳定溶解铁的重要但被忽视的来源?
  • 批准号:
    1755571
  • 财政年份:
    2018
  • 资助金额:
    $ 24.07万
  • 项目类别:
    Standard Grant
Measurement of Helium Isotopes on the U.S. GEOTRACES Alaska-Tahiti Section (GP15)
美国 GEOTRACES 阿拉斯加-塔希提段 (GP15) 的氦同位素测量
  • 批准号:
    1756138
  • 财政年份:
    2018
  • 资助金额:
    $ 24.07万
  • 项目类别:
    Continuing Grant
Collaborative Research: Suspended particle geochemistry along the US GEOTRACES Eastern Pacific Zonal Transect, from high productivity ocean margin to deep sea hydrothermal plume
合作研究:沿美国 GEOTRACES 东太平洋纬向断面的悬浮颗粒地球化学,从高产海洋边缘到深海热液羽流
  • 批准号:
    1235248
  • 财政年份:
    2013
  • 资助金额:
    $ 24.07万
  • 项目类别:
    Standard Grant
INSPIRE Track 1: Collaborative Research: Transforming Remotely-conducted Research through Ethnography, Education and Rapidly-Evolving Technologies
INSPIRE 轨道 1:协作研究:通过民族志、教育和快速发展的技术转变远程研究
  • 批准号:
    1344250
  • 财政年份:
    2013
  • 资助金额:
    $ 24.07万
  • 项目类别:
    Continuing Grant
Collaborative Research: Management and Implementation of US GEOTRACES Eastern Pacific Zonal Transect
合作研究:美国GEOTRACES东太平洋地带样带的管理和实施
  • 批准号:
    1130870
  • 财政年份:
    2012
  • 资助金额:
    $ 24.07万
  • 项目类别:
    Standard Grant
RAPID: Time Series Sampling for Radionuclide and Biogeochemical Fluxes at F1 Time-series Station, Offshore Fukushima Dai-ichi Nuclear Power Facility
RAPID:福岛第一核电站海上 F1 时间序列站放射性核素和生物地球化学通量的时间序列采样
  • 批准号:
    1139902
  • 财政年份:
    2011
  • 资助金额:
    $ 24.07万
  • 项目类别:
    Standard Grant
Collaborative Research: Venting Outside the Box - Extending the Known Limits to Seafloor Hydrothermal Circulation and the Chemosynthetic Life it Supports
合作研究:开箱即用的通风——扩展海底热液循环及其支持的化学合成生命的已知极限
  • 批准号:
    1061863
  • 财政年份:
    2011
  • 资助金额:
    $ 24.07万
  • 项目类别:
    Continuing Grant
RAPID Response in Gulf of Mexico: Sediment Trap Investigations
墨西哥湾的快速响应:沉积物收集器调查
  • 批准号:
    1044289
  • 财政年份:
    2010
  • 资助金额:
    $ 24.07万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
  • 批准号:
    2409395
  • 财政年份:
    2024
  • 资助金额:
    $ 24.07万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347624
  • 财政年份:
    2024
  • 资助金额:
    $ 24.07万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 24.07万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345581
  • 财政年份:
    2024
  • 资助金额:
    $ 24.07万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345582
  • 财政年份:
    2024
  • 资助金额:
    $ 24.07万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345583
  • 财政年份:
    2024
  • 资助金额:
    $ 24.07万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333604
  • 财政年份:
    2024
  • 资助金额:
    $ 24.07万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
  • 批准号:
    2339062
  • 财政年份:
    2024
  • 资助金额:
    $ 24.07万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333603
  • 财政年份:
    2024
  • 资助金额:
    $ 24.07万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347623
  • 财政年份:
    2024
  • 资助金额:
    $ 24.07万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了