Collaborative Research: Mathematical and Experimental Analysis of Competitive Ecological Models: Patches, Landscapes, Stage Structure, and Conditional Dispersal on the Boundary

合作研究:竞争性生态模型的数学和实验分析:斑块、景观、阶段结构和边界上的条件扩散

基本信息

项目摘要

In our increasingly fragmented world, dispersal between habitat fragments is essential for the long-term survival of a species. This project will integrate mathematical modeling and experimental analysis of an insect commonly found in stored grains to describe the effects of habitat fragmentation, conditional dispersal (e.g. an organism?s decision to leave a fragment depends upon competitor presence) and interspecific competition on population dynamics from the patch level to the landscape level. Results from this project will answer key ecological questions including: What effects do competitors have on the emigration behavior of species at patch boundaries? How do relationships between density and emigration affect regional population dynamics and competitor coexistence? How does conditional dispersal affect competition-dispersal tradeoffs that are thought to be a key to competitor coexistence? The project will advance the analysis of mathematical models created to answer these questions and better understand model dynamics. Finally, results from this study will apply to conservation programs and habitat reserve design. Graduate and undergraduate students will be trained through PI-hosted workshops and mentorship of independent research projects. Project results will be disseminated to both ecological and mathematical communities through peer-reviewed journals, national and international conference talks, and a user-friendly website. Additionally, an app that estimates key dispersal parameters from field data will be created and made publicly available. This project is funded jointly by the Division of Mathematical Sciences Mathematical Biology program and the Division of Environmental Biology Population and Community Ecology program.This collaborative project will integrate reaction-diffusion models, mathematical analysis, and experimental analysis to explore the effects of habitat fragmentation, conditional dispersal and interspecific competition on the population dynamics and species coexistence from the patch to the landscape level. The PIs will use diffusive Lotka-Volterra competition systems with nonlinear boundary conditions modeling density dependent emigration (DDE) both at the patch and landscape levels and stage structure. Ongoing research suggests that life-history traits, such as whether a species is solitary or gregarious, can provide cues as to the form of DDE for particular species. Knowledge of species' life histories, coupled with our predictions regarding how different forms of DDE can affect species coexistence and connectivity among habitat patches, can help determine whether existing reserves are adequate for species coexistence. Dispersal experiments will be performed using two Tribolium flour beetle species to parameterize the models and compare model predictions about coexistence and stability with results from long-term experiments. Innovative contributions will be made by providing (1) experimental evidence that interspecific competitors affect within-patch redistribution, boundary behavior and the strength and form of the DDE relationship; (2) the first theoretical framework and empirical evidence for the effects of conditional dispersal on the population dynamics and coexistence of competing species in fragmented landscapes; and (3) novel analysis of elliptic boundary value problems with nonlinear boundary conditions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在我们这个日益碎片化的世界里,栖息地碎片之间的分散对于一个物种的长期生存至关重要。该项目将整合数学建模和实验分析的一种常见的昆虫在存储的谷物,以描述栖息地破碎化的影响,条件扩散(例如,一个有机体?的决定,离开一个片段取决于竞争对手的存在)和种间竞争的种群动态从斑块水平景观水平。该项目的结果将回答关键的生态问题,包括:竞争对手对物种在斑块边界的迁移行为有什么影响?人口密度和移民之间的关系如何影响区域人口动态和竞争者共存?条件分散如何影响竞争分散权衡,被认为是竞争者共存的关键?该项目将推进为回答这些问题而创建的数学模型的分析,并更好地理解模型动态。最后,本研究的结果将适用于保护计划和栖息地保护区设计。研究生和本科生将通过PI主办的研讨会和独立研究项目的指导进行培训。项目成果将通过同行评审的期刊、国家和国际会议讲座以及用户友好的网站传播给生态和数学界。此外,还将创建一个应用程序,从实地数据中估计关键的扩散参数,并向公众提供。本计画由数学科学部数学生物学计画与环境生物学部人口与社区生态学计画共同资助,将结合反应扩散模式、数学分析与实验分析,探讨栖地破碎化的影响,条件扩散和种间竞争对种群动态和物种共存的影响。PI将使用扩散的Lotka-Volterra竞争系统与非线性边界条件建模密度依赖移民(DDE)在补丁和景观水平和阶段结构。正在进行的研究表明,生活史特征,如一个物种是独居还是群居,可以为特定物种的DDE形式提供线索。物种的生活史的知识,再加上我们的预测,不同形式的DDE如何影响物种共存和栖息地斑块之间的连接,可以帮助确定现有的保护区是否足以物种共存。 将使用两种拟谷盗粉甲虫物种进行扩散实验,以参数化模型,并将共存和稳定性的模型预测与长期实验结果进行比较。创新性的贡献将通过提供(1)实验证据表明,种间竞争影响斑块内再分配,边界行为和DDE关系的强度和形式;(2)第一个理论框架和经验证据的影响条件扩散的种群动态和竞争物种在破碎景观共存;以及(3)具有非线性边界条件的椭圆边值问题的新颖分析。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估而被认为值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A study of logistic growth models influenced by the exterior matrix hostility and grazing in an interior patch
外部基质敌对和内部斑块放牧影响的物流增长模型研究
Frequency of Occurrence and Population-Dynamic Consequences of Different Forms of Density-Dependent Emigration
  • DOI:
    10.1086/708156
  • 发表时间:
    2020-05-01
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Harman, Rachel R.;Goddard, Jerome, II;Cronin, James T.
  • 通讯作者:
    Cronin, James T.
The diffusive Lotka–Volterra competition model in fragmented patches I: Coexistence
碎片化斑块中的扩散LotkaâVolterra竞争模型I:共存
  • DOI:
    10.1016/j.nonrwa.2022.103775
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Acharya, A.;Bandyopadhyay, S.;Cronin, J.T.;Goddard, J.;Muthunayake, A.;Shivaji, R.
  • 通讯作者:
    Shivaji, R.
Modeling the effects of trait-mediated dispersal on coexistence of mutualists
模拟特征介导的扩散对互利共存的影响
  • DOI:
    10.3934/mbe.2020399
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    T. Cronin, James;Goddard II, Jerome;Muthunayake, Amila;Shivaji, Ratnasingham
  • 通讯作者:
    Shivaji, Ratnasingham
Ecological release and patch geometry can cause nonlinear density–area relationships
生态释放和斑块几何形状会导致非线性密度与面积关系
  • DOI:
    10.1016/j.jtbi.2022.111325
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Goddard, Jerome;Shivaji, Ratnasingham;Cronin, James T.
  • 通讯作者:
    Cronin, James T.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ratnasingham Shivaji其他文献

Positive solutions of multiparameter semipositone <em>p</em>-Laplacian problems
  • DOI:
    10.1016/j.jmaa.2007.05.085
  • 发表时间:
    2008-02-15
  • 期刊:
  • 影响因子:
  • 作者:
    Kanishka Perera;Ratnasingham Shivaji
  • 通讯作者:
    Ratnasingham Shivaji

Ratnasingham Shivaji的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ratnasingham Shivaji', 18)}}的其他基金

Collaborative Research: Mathematical and experimental analysis of the interaction between competitors and a shared predator - from patches to landscapes
合作研究:对竞争对手和共同捕食者之间的相互作用进行数学和实验分析 - 从斑块到景观
  • 批准号:
    2246723
  • 财政年份:
    2023
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Continuing Grant
Collaborative Research: Mathematical and Experimental Analysis of Competitive and Predator-Prey Models: Conditional Dispersal on Patches to Landscapes
合作研究:竞争模型和捕食者-被捕食模型的数学和实验分析:景观斑块的条件扩散
  • 批准号:
    2150945
  • 财政年份:
    2022
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Standard Grant
Collaborative Research: Mathematical and Experimental Analysis of Ecological Models: Patches, Landscapes and Conditional Dispersal on the Boundary
合作研究:生态模型的数学和实验分析:斑块、景观和边界上的条件扩散
  • 批准号:
    1516519
  • 财政年份:
    2015
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Standard Grant
5th Mississippi State Conference on Differential Equations & Computational Simulations
第五届密西西比州微分方程会议
  • 批准号:
    0107783
  • 财政年份:
    2001
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Standard Grant
4th Mississippi State Conference on Differential Equations and Computational Simulations at Starkville, Mississippi on May 21-22, 1999
第四届密西西比州微分方程和计算模拟会议,1999 年 5 月 21-22 日在密西西比州斯塔克维尔举行
  • 批准号:
    9971465
  • 财政年份:
    1999
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Standard Grant
Third Mississippi State Conference on Differential Equations and Computational Simulations, May 16-17, 1997
第三届密西西比州微分方程和计算模拟会议,1997 年 5 月 16-17 日
  • 批准号:
    9707261
  • 财政年份:
    1997
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Standard Grant
Second Mississippi State Conference on Differential Equation Equasions & Computational Simulations; April 7-8, 1995; Mississippi State, MI
第二届密西西比州微分方程会议
  • 批准号:
    9510552
  • 财政年份:
    1995
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Semi-Positone Problems II
数学科学:半正音问题 II
  • 批准号:
    9215027
  • 财政年份:
    1993
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Southeastern-Atlantic Regional Conference On Differential Equations
数学科学:东南大西洋地区微分方程会议
  • 批准号:
    9113171
  • 财政年份:
    1991
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Mathematical Analysis of Semi-Positone Problems
数学科学:半正音问题的数学分析
  • 批准号:
    8905936
  • 财政年份:
    1989
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Conference: Great Lakes Mathematical Physics Meetings 2024-2025
合作研究:会议:2024-2025 年五大湖数学物理会议
  • 批准号:
    2401257
  • 财政年份:
    2024
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
  • 批准号:
    2343599
  • 财政年份:
    2024
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
  • 批准号:
    2343600
  • 财政年份:
    2024
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
  • 批准号:
    2317573
  • 财政年份:
    2024
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Continuing Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
  • 批准号:
    2317570
  • 财政年份:
    2024
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Continuing Grant
Collaborative Research: Conference: Great Lakes Mathematical Physics Meetings 2024-2025
合作研究:会议:2024-2025 年五大湖数学物理会议
  • 批准号:
    2401258
  • 财政年份:
    2024
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
  • 批准号:
    2317572
  • 财政年份:
    2024
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Continuing Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
  • 批准号:
    2317569
  • 财政年份:
    2024
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Continuing Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
  • 批准号:
    2317571
  • 财政年份:
    2024
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Standard Grant
Collaborative Research: Supporting Pre-Service Teachers Mathematical Discourse through Co-Design of Teaching Simulation Tools
协作研究:通过教学模拟工具的共同设计支持职前教师的数学话语
  • 批准号:
    2315437
  • 财政年份:
    2023
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了