Collaborative Research: Mathematical and Experimental Analysis of Competitive Ecological Models: Patches, Landscapes, Stage Structure, and Conditional Dispersal on the Boundary

合作研究:竞争性生态模型的数学和实验分析:斑块、景观、阶段结构和边界上的条件扩散

基本信息

项目摘要

In our increasingly fragmented world, dispersal between habitat fragments is essential for the long-term survival of a species. This project will integrate mathematical modeling and experimental analysis of an insect commonly found in stored grains to describe the effects of habitat fragmentation, conditional dispersal (e.g. an organism?s decision to leave a fragment depends upon competitor presence) and interspecific competition on population dynamics from the patch level to the landscape level. Results from this project will answer key ecological questions including: What effects do competitors have on the emigration behavior of species at patch boundaries? How do relationships between density and emigration affect regional population dynamics and competitor coexistence? How does conditional dispersal affect competition-dispersal tradeoffs that are thought to be a key to competitor coexistence? The project will advance the analysis of mathematical models created to answer these questions and better understand model dynamics. Finally, results from this study will apply to conservation programs and habitat reserve design. Graduate and undergraduate students will be trained through PI-hosted workshops and mentorship of independent research projects. Project results will be disseminated to both ecological and mathematical communities through peer-reviewed journals, national and international conference talks, and a user-friendly website. Additionally, an app that estimates key dispersal parameters from field data will be created and made publicly available. This project is funded jointly by the Division of Mathematical Sciences Mathematical Biology program and the Division of Environmental Biology Population and Community Ecology program.This collaborative project will integrate reaction-diffusion models, mathematical analysis, and experimental analysis to explore the effects of habitat fragmentation, conditional dispersal and interspecific competition on the population dynamics and species coexistence from the patch to the landscape level. The PIs will use diffusive Lotka-Volterra competition systems with nonlinear boundary conditions modeling density dependent emigration (DDE) both at the patch and landscape levels and stage structure. Ongoing research suggests that life-history traits, such as whether a species is solitary or gregarious, can provide cues as to the form of DDE for particular species. Knowledge of species' life histories, coupled with our predictions regarding how different forms of DDE can affect species coexistence and connectivity among habitat patches, can help determine whether existing reserves are adequate for species coexistence. Dispersal experiments will be performed using two Tribolium flour beetle species to parameterize the models and compare model predictions about coexistence and stability with results from long-term experiments. Innovative contributions will be made by providing (1) experimental evidence that interspecific competitors affect within-patch redistribution, boundary behavior and the strength and form of the DDE relationship; (2) the first theoretical framework and empirical evidence for the effects of conditional dispersal on the population dynamics and coexistence of competing species in fragmented landscapes; and (3) novel analysis of elliptic boundary value problems with nonlinear boundary conditions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在我们日益分散的世界中,栖息地碎片之间的扩散对于一个物种的长期生存至关重要。该项目将整合储存谷物中常见的昆虫的数学建模和实验分析,以描述栖息地破碎,有条件分散的影响(例如,离开碎片的生物的决定取决于竞争者的存在)和间种间的竞争对从斑块水平到景观水平的种群动态竞争。该项目的结果将回答关键的生态问题,包括:竞争对手对斑块边界上物种的移民行为产生什么影响?密度与移民之间的关系如何影响区域人口动态和竞争者共存?有条件的散布如何影响竞争派出的权衡,而竞争折衷方案被认为是竞争者共存的关键?该项目将推进为回答这些问题而创建的数学模型的分析,并更好地理解模型动态。最后,这项研究的结果将适用于保护计划和栖息地储备设计。研究生和本科生将通过PI主持的研讨会和独立研究项目的指导进行培训。项目结果将通过同行评审的期刊,国家和国际会议演讲以及用户友好的网站传播到生态和数学社区。此外,将创建并公开可用来估算字段数据的关键分散参数的应用程序。 This project is funded jointly by the Division of Mathematical Sciences Mathematical Biology program and the Division of Environmental Biology Population and Community Ecology program.This collaborative project will integrate reaction-diffusion models, mathematical analysis, and experimental analysis to explore the effects of habitat fragmentation, conditional dispersal and interspecific competition on the population dynamics and species coexistence from the patch to the landscape level. PI将在斑块和景观水平和阶段结构上使用非线性边界条件建模依赖性移民(DDE)的扩散Lotka-Volterra竞争系统。正在进行的研究表明,诸如物种是孤立的还是群体的生活特征,可以为特定物种提供有关DDE形式的线索。了解物种的生命历史,再加上我们关于栖息地斑块之间不同形式的DDE如何影响物种共存和连通性的预测,可以帮助确定现有的储量是否足以使物种共存。 分散实验将使用两个贡粉甲虫物种进行参数化模型,并比较有关共存和稳定性的模型预测与长期实验的结果。通过(1)实验证据表明,种间竞争者会影响内部重新分布,边界行为以及DDE关系的强度和形式; (2)有条件散布对碎片景观中竞争物种的种群动态和共存的第一个理论框架和经验证据; (3)对非线性边界条件的椭圆边界价值问题的新颖分析。该奖项反映了NSF的法定任务,并且使用基金会的知识分子优点和更广泛的影响审查标准,被认为值得通过评估来获得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A study of logistic growth models influenced by the exterior matrix hostility and grazing in an interior patch
外部基质敌对和内部斑块放牧影响的物流增长模型研究
Frequency of Occurrence and Population-Dynamic Consequences of Different Forms of Density-Dependent Emigration
  • DOI:
    10.1086/708156
  • 发表时间:
    2020-05-01
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Harman, Rachel R.;Goddard, Jerome, II;Cronin, James T.
  • 通讯作者:
    Cronin, James T.
The diffusive Lotka–Volterra competition model in fragmented patches I: Coexistence
碎片化斑块中的扩散LotkaâVolterra竞争模型I:共存
  • DOI:
    10.1016/j.nonrwa.2022.103775
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Acharya, A.;Bandyopadhyay, S.;Cronin, J.T.;Goddard, J.;Muthunayake, A.;Shivaji, R.
  • 通讯作者:
    Shivaji, R.
Modeling the effects of trait-mediated dispersal on coexistence of mutualists
模拟特征介导的扩散对互利共存的影响
  • DOI:
    10.3934/mbe.2020399
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    T. Cronin, James;Goddard II, Jerome;Muthunayake, Amila;Shivaji, Ratnasingham
  • 通讯作者:
    Shivaji, Ratnasingham
Ecological release and patch geometry can cause nonlinear density–area relationships
生态释放和斑块几何形状会导致非线性密度与面积关系
  • DOI:
    10.1016/j.jtbi.2022.111325
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Goddard, Jerome;Shivaji, Ratnasingham;Cronin, James T.
  • 通讯作者:
    Cronin, James T.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ratnasingham Shivaji其他文献

Positive solutions of multiparameter semipositone <em>p</em>-Laplacian problems
  • DOI:
    10.1016/j.jmaa.2007.05.085
  • 发表时间:
    2008-02-15
  • 期刊:
  • 影响因子:
  • 作者:
    Kanishka Perera;Ratnasingham Shivaji
  • 通讯作者:
    Ratnasingham Shivaji

Ratnasingham Shivaji的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ratnasingham Shivaji', 18)}}的其他基金

Collaborative Research: Mathematical and experimental analysis of the interaction between competitors and a shared predator - from patches to landscapes
合作研究:对竞争对手和共同捕食者之间的相互作用进行数学和实验分析 - 从斑块到景观
  • 批准号:
    2246723
  • 财政年份:
    2023
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Continuing Grant
Collaborative Research: Mathematical and Experimental Analysis of Competitive and Predator-Prey Models: Conditional Dispersal on Patches to Landscapes
合作研究:竞争模型和捕食者-被捕食模型的数学和实验分析:景观斑块的条件扩散
  • 批准号:
    2150945
  • 财政年份:
    2022
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Standard Grant
Collaborative Research: Mathematical and Experimental Analysis of Ecological Models: Patches, Landscapes and Conditional Dispersal on the Boundary
合作研究:生态模型的数学和实验分析:斑块、景观和边界上的条件扩散
  • 批准号:
    1516519
  • 财政年份:
    2015
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Standard Grant
5th Mississippi State Conference on Differential Equations & Computational Simulations
第五届密西西比州微分方程会议
  • 批准号:
    0107783
  • 财政年份:
    2001
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Standard Grant
4th Mississippi State Conference on Differential Equations and Computational Simulations at Starkville, Mississippi on May 21-22, 1999
第四届密西西比州微分方程和计算模拟会议,1999 年 5 月 21-22 日在密西西比州斯塔克维尔举行
  • 批准号:
    9971465
  • 财政年份:
    1999
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Standard Grant
Third Mississippi State Conference on Differential Equations and Computational Simulations, May 16-17, 1997
第三届密西西比州微分方程和计算模拟会议,1997 年 5 月 16-17 日
  • 批准号:
    9707261
  • 财政年份:
    1997
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Standard Grant
Second Mississippi State Conference on Differential Equation Equasions & Computational Simulations; April 7-8, 1995; Mississippi State, MI
第二届密西西比州微分方程会议
  • 批准号:
    9510552
  • 财政年份:
    1995
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Semi-Positone Problems II
数学科学:半正音问题 II
  • 批准号:
    9215027
  • 财政年份:
    1993
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Southeastern-Atlantic Regional Conference On Differential Equations
数学科学:东南大西洋地区微分方程会议
  • 批准号:
    9113171
  • 财政年份:
    1991
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Mathematical Analysis of Semi-Positone Problems
数学科学:半正音问题的数学分析
  • 批准号:
    8905936
  • 财政年份:
    1989
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Continuing Grant

相似国自然基金

热辐射影响的可压缩流体模型的数学问题研究
  • 批准号:
    12371222
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
基于“效应成分-谱学/药效学/数学关联数据挖掘”整合的银柴胡质量标志物发现研究
  • 批准号:
    82360769
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
2023年(第四届)国际生物数学与医学应用研讨会
  • 批准号:
    12342004
  • 批准年份:
    2023
  • 资助金额:
    8.00 万元
  • 项目类别:
    专项项目
基于非交换留数理论和Gauss-Bonnet定理的流形几何性质研究
  • 批准号:
    12301063
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
高维零磁扩散磁流体力学方程组若干数学问题的研究
  • 批准号:
    12371227
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
  • 批准号:
    2317573
  • 财政年份:
    2024
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Continuing Grant
Collaborative Research: Conference: Great Lakes Mathematical Physics Meetings 2024-2025
合作研究:会议:2024-2025 年五大湖数学物理会议
  • 批准号:
    2401257
  • 财政年份:
    2024
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
  • 批准号:
    2343599
  • 财政年份:
    2024
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
  • 批准号:
    2343600
  • 财政年份:
    2024
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
  • 批准号:
    2317570
  • 财政年份:
    2024
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了