Collaborative Research: Efficient Methods for Identifiability of Dynamic Models
协作研究:动态模型可识别性的有效方法
基本信息
- 批准号:1853650
- 负责人:
- 金额:$ 23.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The goal of the project is to analyze and improve the calibration of dynamic models developed by researchers in biology and other sciences to model real-world processes. Mathematical models are used broadly across biology to understand mechanisms, make predictions, and guide intervention strategies. To do so, the model parameters often must be calibrated using data; the estimated parameters can have significant implications for reliability of insights generated from the model and data. This raises the important question of whether the calibration process is well posed, i.e. is it possible to uniquely estimate model parameters from a given type or set of data? Identifiability analysis is the study of these issues, and this project will improve and expand the currently available set of algebraic identifiability methods to set them on a firmer theoretical basis and address new types of models used broadly in many biological settings. Beyond academia, the algorithms to be developed will allow researchers to successfully link models and experiments to generate model-based insights that improve real-world treatment strategies. Training will be provided to two Ph.D. students working on research for this project. The training component will also include interdisciplinary course development as well as a conference with tutorial lectures and problem sessions to educate industrial and academic participants in the theory, algorithms, and software developed in this project. This project is supported jointly by the Division of Mathematical Sciences Mathematical Biology and Division of Computing and Communication Foundations Algorithmic Foundations programs.More specifically, the investigators will develop, analyze, and implement symbolic and symbolic-numeric algorithms that perform identifiability analysis of dynamic models (including ordinary differential (ODE), delay, and difference equation models) that appear in biology and other sciences. Using these algorithms, they will also carry out identifiability analysis for a range of models drawn from cellular signaling and physiology applications. The proposed algorithms will be based on differential-difference algebra, which connects to identifiability in the common case of rational ODEs/delay/difference equations by applying differential-difference elimination algorithms to the model equations. Such symbolic methods for ODE models have proven to be productive in the area of parameter identifiability. The proposed methods would allow a large class of models to be analyzed for structural identifiability, allowing one to assess which parameters can be estimated and tailor experiment design to answer the questions of interest for treatment strategies and mechanistic insights. For the first time, rigorously justified and analyzed efficient algorithms will be available for identifiability problems in delay and difference equation models. Certified and more efficient algorithms will appear for global identifiability problems in ODE models. To carry out the proposed research, new advances in the algebraic theory of differential/difference equations will be made.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的目标是分析和改进生物学和其他科学研究人员开发的动态模型的校准,以模拟真实世界的过程。数学模型在生物学中被广泛用于理解机制,进行预测和指导干预策略。为此,模型参数通常必须使用数据进行校准;估计的参数可能对从模型和数据生成的见解的可靠性具有重要意义。这就提出了一个重要的问题,即校准过程是否是适定性的,即是否有可能从给定类型或数据集中唯一地估计模型参数?可识别性分析是对这些问题的研究,该项目将改进和扩展目前可用的代数可识别性方法集,使其建立在更坚实的理论基础上,并解决在许多生物环境中广泛使用的新型模型。在学术界之外,即将开发的算法将使研究人员能够成功地将模型和实验联系起来,以生成基于模型的见解,从而改善现实世界的治疗策略。将向两名博士提供培训。为这个项目做研究的学生。培训部分还将包括跨学科课程开发以及一个包含辅导讲座和问题会议的会议,以教育该项目中开发的理论,算法和软件的工业和学术参与者。 本项目由数学科学部数学生物学和计算与通信基金会数学基金会项目部共同资助,具体而言,研究人员将开发、分析和实现符号和符号-数值算法,对生物学和其他科学中出现的动态模型(包括常微分(ODE)、延迟和差分方程模型)进行可识别性分析。使用这些算法,他们还将对从细胞信号传导和生理学应用中提取的一系列模型进行可识别性分析。所提出的算法将基于微分-差分代数,其通过对模型方程应用微分-差分消除算法来连接到有理ODE/延迟/差分方程的常见情况下的可识别性。这样的符号方法已被证明是生产领域的参数识别。所提出的方法将允许分析一大类模型的结构可识别性,允许人们评估哪些参数可以估计和定制实验设计,以回答感兴趣的问题,治疗策略和机制的见解。对于第一次,严格的理由和分析有效的算法将可用于识别问题的延迟和差分方程模型。证明和更有效的算法将出现在ODE模型的全局可识别性问题。为了开展拟议的研究,微分/差分方程的代数理论将取得新的进展。这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(24)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Separating variables in bivariate polynomial ideals
- DOI:10.1145/3373207.3404028
- 发表时间:2020-02
- 期刊:
- 影响因子:0
- 作者:Manfred Buchacher;Manuel Kauers;G. Pogudin
- 通讯作者:Manfred Buchacher;Manuel Kauers;G. Pogudin
Optimal Monomial Quadratization for ODE Systems
ODE 系统的最优单项式二次化
- DOI:10.1007/978-3-030-79987-8_9
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Bychkov, Andrey;Pogudin, Gleb
- 通讯作者:Pogudin, Gleb
Quadratization of ODEs: Monomial vs. Non-Monomial
ODE 的二次化:单项式与非单项式
- DOI:10.1137/20s1360578
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Alauddin, Foyez
- 通讯作者:Alauddin, Foyez
On Realizing Differential-Algebraic Equations by Rational Dynamical Systems
用有理动力系统实现微分代数方程
- DOI:10.1145/3476446.3535492
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Pavlov, Dmitrii;Pogudin, Gleb
- 通讯作者:Pogudin, Gleb
Bit-Complexity of Solving Systems of Linear Evolutionary Partial Differential Equations
线性进化偏微分方程组求解的位复杂度
- DOI:10.1007/978-3-030-79416-3_13
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Koswara, I.;Pogudin, G.;Selivanova, S.;Ziegler, M.
- 通讯作者:Ziegler, M.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexey Ovchinnikov其他文献
Tannakian Approach to Linear Differential Algebraic Groups
- DOI:
10.1007/s00031-008-9010-4 - 发表时间:
2008-06-03 - 期刊:
- 影响因子:0.400
- 作者:
Alexey Ovchinnikov - 通讯作者:
Alexey Ovchinnikov
On bounds for the effective differential Nullstellensatz
- DOI:
10.1016/j.jalgebra.2015.10.009 - 发表时间:
2016-03-01 - 期刊:
- 影响因子:
- 作者:
Omar León Sánchez;Alexey Ovchinnikov - 通讯作者:
Alexey Ovchinnikov
Tannakian Categories, Linear Differential Algebraic Groups, and Parametrized Linear Differential Equations
- DOI:
10.1007/s00031-008-9042-9 - 发表时间:
2008-11-27 - 期刊:
- 影响因子:0.400
- 作者:
Alexey Ovchinnikov - 通讯作者:
Alexey Ovchinnikov
High-molecular weight bottlebrushes emvia/em continuous flow photoiniferter polymerization of macromonomers
高分子量瓶刷通过大分子单体的 emvia/em 连续流光引发聚合
- DOI:
10.1039/d3py00042g - 发表时间:
2023-01-01 - 期刊:
- 影响因子:3.900
- 作者:
Alexey Sivokhin;Dmitry Orekhov;Oleg Kazantsev;Ksenia Otopkova;Olga Sivokhina;Yuri Chesnokov;Michael Smirnov;Alexey Ovchinnikov;Ilya Makhov - 通讯作者:
Ilya Makhov
Technique of cluster validity for Text Mining
文本挖掘的聚类有效性技术
- DOI:
10.1109/confluence.2016.7508139 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
G. Chernyshova;Gennady Smorodin;Alexey Ovchinnikov - 通讯作者:
Alexey Ovchinnikov
Alexey Ovchinnikov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexey Ovchinnikov', 18)}}的其他基金
Collaborative Research: CCF: AF: Medium: Validated Soft Approaches to Parametric ODE Solving
协作研究:CCF:AF:中:经过验证的参数 ODE 求解软方法
- 批准号:
2212460 - 财政年份:2022
- 资助金额:
$ 23.73万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Model Theory of Differential and Difference Equations with Applications
FRG:协作研究:微分方程和差分方程的模型理论及其应用
- 批准号:
1760448 - 财政年份:2018
- 资助金额:
$ 23.73万 - 项目类别:
Standard Grant
International Symposium on Symbolic and Algebraic Computation
符号与代数计算国际研讨会
- 批准号:
1708884 - 财政年份:2017
- 资助金额:
$ 23.73万 - 项目类别:
Standard Grant
AF: Medium: Collaborative Research: Numerical Algebraic Differential Equations
AF:媒介:协作研究:数值代数微分方程
- 批准号:
1563942 - 财政年份:2016
- 资助金额:
$ 23.73万 - 项目类别:
Continuing Grant
Algebraic Theory of Differential and Functional Equations: from Foundations to Computation
微分方程和泛函方程的代数理论:从基础到计算
- 批准号:
1606334 - 财政年份:2016
- 资助金额:
$ 23.73万 - 项目类别:
Standard Grant
Computational Differential and Difference Algebra, a special session at the Applications of Computer Algebra 2014 Conference, July 9 - 12, 2014.
计算微分和差分代数,2014 年计算机代数应用会议的特别会议,2014 年 7 月 9 日至 12 日。
- 批准号:
1413859 - 财政年份:2014
- 资助金额:
$ 23.73万 - 项目类别:
Standard Grant
CAREER: CISE-CCF-AF-Algebra: DMS-Algebra: Computational Differential Algebra
职业:CISE-CCF-AF-代数:DMS-代数:计算微分代数
- 批准号:
0952591 - 财政年份:2010
- 资助金额:
$ 23.73万 - 项目类别:
Continuing Grant
CISE-CCF-AF-Algebra: SGER: Computational Methods for Systems of Difference Equations
CISE-CCF-AF-代数:SGER:差分方程组的计算方法
- 批准号:
0901175 - 财政年份:2009
- 资助金额:
$ 23.73万 - 项目类别:
Standard Grant
CISE-CCF-AF-Algebra: SGER: Computational Methods for Systems of Difference Equations
CISE-CCF-AF-代数:SGER:差分方程组的计算方法
- 批准号:
0964875 - 财政年份:2009
- 资助金额:
$ 23.73万 - 项目类别:
Standard Grant
相似国自然基金
面向水下装备的光-热协同供能高效转化方法及应用研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
海藻共栖黄杆菌Maribacter高效协同酶
解昆布多糖的分子机制和生态分布研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
LiF-MxOy/C协同型正极材料的空间限域设计及高效储锂机制研究
- 批准号:JCZRQN202500977
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
碳化硅晶片超声辅助化学机械高效精密抛光机理与协同优化研究
- 批准号:QN25E050025
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
加快构建协同高效的科技管理决策指挥体系和组织实施体系研究
- 批准号:2025C25060
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
多端口多有源桥电力电子变压器的安全高效协同控制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于吸附-催化协同机制的低浓度二氧化碳还原高效电催化剂设计研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
边缘智能驱动的车联网异构信息高效融合及自主分布式协同决策关键技术研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
内存高效脉冲神经网络的软硬协同设计
优化研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
木质素基氮掺杂有序介孔碳限域金属协同催化二氧化碳高效环加成反应机制研究
- 批准号:2025JJ50095
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334970 - 财政年份:2024
- 资助金额:
$ 23.73万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 23.73万 - 项目类别:
Standard Grant
Collaborative Research: Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
合作研究:用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
- 批准号:
2343606 - 财政年份:2024
- 资助金额:
$ 23.73万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334969 - 财政年份:2024
- 资助金额:
$ 23.73万 - 项目类别:
Standard Grant
Collaborative Research: Integrated Materials-Manufacturing-Controls Framework for Efficient and Resilient Manufacturing Systems
协作研究:高效、弹性制造系统的集成材料制造控制框架
- 批准号:
2346650 - 财政年份:2024
- 资助金额:
$ 23.73万 - 项目类别:
Standard Grant
Collaborative Research: Integrated Materials-Manufacturing-Controls Framework for Efficient and Resilient Manufacturing Systems
协作研究:高效、弹性制造系统的集成材料制造控制框架
- 批准号:
2346651 - 财政年份:2024
- 资助金额:
$ 23.73万 - 项目类别:
Standard Grant
Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
- 批准号:
2312886 - 财政年份:2023
- 资助金额:
$ 23.73万 - 项目类别:
Standard Grant
Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
- 批准号:
2312884 - 财政年份:2023
- 资助金额:
$ 23.73万 - 项目类别:
Standard Grant
Collaborative Research: FET: Medium: Efficient Compilation for Dynamically Reconfigurable Atom Arrays
合作研究:FET:中:动态可重构原子阵列的高效编译
- 批准号:
2313084 - 财政年份:2023
- 资助金额:
$ 23.73万 - 项目类别:
Standard Grant
Collaborative Research: Accurate and Structure-Preserving Numerical Schemes for Variable Temperature Phase Field Models and Efficient Solvers
合作研究:用于变温相场模型和高效求解器的精确且结构保持的数值方案
- 批准号:
2309547 - 财政年份:2023
- 资助金额:
$ 23.73万 - 项目类别:
Standard Grant