FRG: Collaborative Research: von Neumann Algebras Associated to Groups Acting on Hyperbolic Spaces

FRG:合作研究:与作用于双曲空间的群相关的冯诺依曼代数

基本信息

  • 批准号:
    1854194
  • 负责人:
  • 金额:
    $ 28.84万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-06-01 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

The study of von Neumann algebras was initiated in the 1930s and 1940s by F. Murray and J. von Neumann as a mathematical tool to understand particle physics. Subsequently, it became an independent discipline that has stimulated the development of powerful mathematical theories and bringing valuable insight to physics (statistical mechanics), biology (DNA structure), and engineering (cell phone network design). Von Neumann algebras are highly interdisciplinary in nature as they arise canonically from simpler mathematical structures, such as symmetries and actions, often present in many areas of mathematics. Over time their study remained closely connected with various topics in dynamical systems, measured group theory, and more recently geometric group theory. This project investigates several major open problems inspired by the rich interaction between operator algebras and the aforementioned fields.This research project explores new horizons in the classification of group von Neumann algebras. The first objective of the project is to advance Connes' rigidity conjecture, a major wide-open problem predicting that ICC property (T) groups are completely recognizable from their von Neumann algebras (W*-superrigid). The PIs proposed several natural constructions of W*-superrigid property (T) groups based on new developments in geometric group theory and deformation/rigidity theory. The second objective of the project revolves around the study of prime II1 factors. The main focus is to understand the relationship between various manifestations of negative curvature in group theory and primeness aspects of the corresponding group factor. The results arising from this project are expected to reveal significant cross-pollination between, geometric group theory, ergodic theory, random walks, C*-algebras, and von Neumann algebras. The PIs intend to organize a series of workshops aimed at stimulating collaboration between experts in these fields. To promote the career development of graduate students the proposal also involves a student exchange program between the participating institutions aimed at exposing students to different expertise and research environments.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
冯诺依曼代数的研究始于20世纪30年代和40年代,由F. Murray和J. von Neumann作为理解粒子物理学的数学工具。随后,它成为一个独立的学科,刺激了强大的数学理论的发展,并为物理学(统计力学),生物学(DNA结构)和工程学(手机网络设计)带来了有价值的见解。冯·诺依曼代数在本质上是高度跨学科的,因为它们从更简单的数学结构(如对称和作用)中规范地产生,通常存在于许多数学领域。随着时间的推移,他们的研究仍然密切相关的各种议题的动力系统,测量群论,以及最近的几何群论。本研究课题以算子代数与上述领域的丰富互动为契机,探讨了几个主要的开放性问题。本研究课题探索了群冯诺依曼代数分类的新视野。该项目的第一个目标是推进Connes的刚性猜想,这是一个重大的开放问题,预测ICC性质(T)群可以从其冯诺依曼代数(W*-超刚性)中完全识别。PI基于几何群论和形变/刚性理论的新发展,提出了W*-超刚性性质(T)群的几种自然构造。该项目的第二个目标围绕着主要II 1因素的研究。主要的焦点是理解群论中负曲率的各种表现和相应群因子的素性方面之间的关系。从这个项目产生的结果预计将揭示显着的交叉授粉之间,几何群论,遍历理论,随机游动,C*-代数,冯诺依曼代数。方案执行机构打算举办一系列讲习班,以促进这些领域专家之间的合作。为了促进研究生的职业发展,该提案还涉及参与机构之间的学生交流计划,旨在使学生接触不同的专业知识和研究环境。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Some rigidity results for II1 factors arising from wreath products of property (T) groups
由属性 (T) 组的花环积产生的 II1 因子的一些刚性结果
  • DOI:
    10.1016/j.jfa.2019.108419
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Chifan, Ionut;Udrea, Bogdan Teodor
  • 通讯作者:
    Udrea, Bogdan Teodor
Some applications of group-theoretic Rips constructions to the classification of von Neumann algebras
群论 Rips 构造在冯诺依曼代数分类中的一些应用
  • DOI:
    10.2140/apde.2023.16.433
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Chifan, Ionuţ;Das, Sayan;Khan, Krishnendu
  • 通讯作者:
    Khan, Krishnendu
New examples of W⁎ and C⁎-superrigid groups
W-和 C-超刚性群的新例子
  • DOI:
    10.1016/j.aim.2022.108797
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Chifan, Ionuţ;Diaz-Arias, Alec;Drimbe, Daniel
  • 通讯作者:
    Drimbe, Daniel
W⁎ and C⁎-superrigidity results for coinduced groups
共诱导组的 W 和 C 超刚性结果
  • DOI:
    10.1016/j.jfa.2022.109730
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Chifan, Ionuţ;Diaz-Arias, Alec;Drimbe, Daniel
  • 通讯作者:
    Drimbe, Daniel
Rigidity results for von Neumann algebras arising from mixing extensions of profinite actions of groups on probability spaces
由概率空间上群的有限作用的混合扩展引起的冯·诺依曼代数的刚性结果
  • DOI:
    10.1007/s00208-020-02064-8
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Chifan, Ionut;Das, Sayan
  • 通讯作者:
    Das, Sayan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ionut Chifan其他文献

Questions around stable equivalence relations
关于稳定等价关系的问题
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ionut Chifan;Adrian Ioana;and Yoshikata Kida;Sho Matsumoto;Yoshikata Kida;松本詔;Yoshikata Kida;松本詔;木田良才
  • 通讯作者:
    木田良才
Plancherel measures on strict partitions: Polynomiality and limit shape problems
严格划分上的 Plancherel 测量:多项式和极限形状问题
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ionut Chifan;Adrian Ioana;and Yoshikata Kida;Sho Matsumoto
  • 通讯作者:
    Sho Matsumoto
Inner amenable groups, stable actions, and central extensions
内部顺从的群体、稳定的行动和中心延伸
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ionut Chifan;Adrian Ioana;and Yoshikata Kida;Sho Matsumoto;Yoshikata Kida;松本詔;Yoshikata Kida
  • 通讯作者:
    Yoshikata Kida
Stability in orbit equivalence, central extensions of groups and relative property (T) I, II
轨道等效稳定性、群中心扩张和相关性质 (T) I、II
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ionut Chifan;Adrian Ioana;and Yoshikata Kida;Sho Matsumoto;Yoshikata Kida;松本詔;Yoshikata Kida;松本詔;木田良才;松本詔;木田良才
  • 通讯作者:
    木田良才
$$W^*$$ -Superrigidity for arbitrary actions of central quotients of braid groups
  • DOI:
    10.1007/s00208-014-1077-8
  • 发表时间:
    2014-08-13
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Ionut Chifan;Adrian Ioana;Yoshikata Kida
  • 通讯作者:
    Yoshikata Kida

Ionut Chifan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ionut Chifan', 18)}}的其他基金

Classification of von Neumann Algebras: Connections and Applications to C*-algebras, Geometric Group Theory and Continuous Model Theory
冯诺依曼代数的分类:与 C* 代数、几何群论和连续模型理论的联系和应用
  • 批准号:
    2154637
  • 财政年份:
    2022
  • 资助金额:
    $ 28.84万
  • 项目类别:
    Standard Grant
Rigidity in von Neumann Algebras: Connections and Applications to Orbit Equivalence, Geometric Group Theory, and Continuous Model Theory
冯·诺依曼代数中的刚性:与轨道等效、几何群论和连续模型理论的联系和应用
  • 批准号:
    1600688
  • 财政年份:
    2016
  • 资助金额:
    $ 28.84万
  • 项目类别:
    Continuing Grant
Thirteenth East Coast Operator Algebra Symposium; October 3 and 4, 2015; University of Iowa
第十三届东海岸算子代数研讨会;
  • 批准号:
    1546401
  • 财政年份:
    2015
  • 资助金额:
    $ 28.84万
  • 项目类别:
    Standard Grant
Rigidity in von Neumann Algebras; Connections and Applications to Orbit Equivalence and Geometric Group Theory
冯·诺依曼代数中的刚性;
  • 批准号:
    1301370
  • 财政年份:
    2013
  • 资助金额:
    $ 28.84万
  • 项目类别:
    Continuing Grant
Rigidity Results in von Neumann Algebras and Orbit Equivalence
冯·诺依曼代数和轨道等效性中的刚性结果
  • 批准号:
    1263982
  • 财政年份:
    2012
  • 资助金额:
    $ 28.84万
  • 项目类别:
    Standard Grant
Rigidity Results in von Neumann Algebras and Orbit Equivalence
冯·诺依曼代数和轨道等效性中的刚性结果
  • 批准号:
    1001286
  • 财政年份:
    2010
  • 资助金额:
    $ 28.84万
  • 项目类别:
    Standard Grant

相似海外基金

FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
  • 批准号:
    2244978
  • 财政年份:
    2023
  • 资助金额:
    $ 28.84万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245017
  • 财政年份:
    2023
  • 资助金额:
    $ 28.84万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245111
  • 财政年份:
    2023
  • 资助金额:
    $ 28.84万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245077
  • 财政年份:
    2023
  • 资助金额:
    $ 28.84万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2244879
  • 财政年份:
    2023
  • 资助金额:
    $ 28.84万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
  • 批准号:
    2245171
  • 财政年份:
    2023
  • 资助金额:
    $ 28.84万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2403764
  • 财政年份:
    2023
  • 资助金额:
    $ 28.84万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245021
  • 财政年份:
    2023
  • 资助金额:
    $ 28.84万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245097
  • 财政年份:
    2023
  • 资助金额:
    $ 28.84万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245147
  • 财政年份:
    2023
  • 资助金额:
    $ 28.84万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了