Rigidity Results in von Neumann Algebras and Orbit Equivalence
冯·诺依曼代数和轨道等效性中的刚性结果
基本信息
- 批准号:1263982
- 负责人:
- 金额:$ 3.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-01 至 2015-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposed project will expand PI?s prior research in the fields of von Neumann algebras and orbit equivalence ergodic theory. PI will exploit new ideas and techniques to obtain additional rigidity results for von Neumann algebras arising from group actions on probability spaces. The PI is seeking general methods that produce new examples of W*E superrigid actions, a problem of central interest in the theory as it unifies extreme forms of rigidity from both orbit equivalence and von Neumann algebras. In addition, the PI will continue his prior investigation of structural properties of certain von Neumann algebras, such as obtaining additional Bass-Serre rigidity type results for amalgamated free products. Over the last decade, Popa?s deformation/rigidity theory led to the solutions of many long-standing problems in von Neumann algebras, orbit equivalence and descriptive set theory. It also triggered new exciting parallel development, such as Peterson?s derivation theory for von Neumann algebras, a technique designed to bring more insight to the field from cohomological aspects of groups representation theory. Moreover, it generated a new array of open problems concerning the classification of von Neumann algebras and the study of equivalence relations, some of which are the object of the current proposal. The PI anticipates additional connections with infinite group representation theory and geometric group theory. Finally, he will seek to attract new young researchers in the field and to exploit connections with other areas of mathematics by co-organizing conferences and informal seminars in von Neumann algebras.
拟议的项目将扩大PI?冯·诺伊曼代数和轨道等价遍历理论领域的先前研究。PI将利用新的思想和技术,以获得额外的刚性结果冯诺依曼代数所产生的群体行动的概率空间。PI正在寻找产生W*E超刚性作用的新例子的通用方法,这是该理论中的一个核心问题,因为它统一了轨道等价和冯诺伊曼代数的极端刚性形式。此外,PI将继续他之前对某些冯诺依曼代数的结构性质的研究,例如获得合并自由积的额外Bass-Serre刚性类型结果。在过去的十年里,波帕?的变形/刚性理论导致了冯诺依曼代数,轨道等价和描述集理论的许多长期存在的问题的解决方案。它还引发了新的令人兴奋的平行发展,如彼得森?的推导理论冯诺依曼代数,一种技术,旨在使更多的洞察力领域的上同调方面的团体表示理论。此外,它产生了一系列新的公开问题,涉及冯诺依曼代数的分类和等价关系的研究,其中一些是当前提案的对象。PI预期与无限群表示理论和几何群论有更多的联系。最后,他将寻求吸引新的年轻研究人员在该领域,并利用与其他领域的数学共同组织会议和非正式研讨会在冯诺依曼代数的连接。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ionut Chifan其他文献
Questions around stable equivalence relations
关于稳定等价关系的问题
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Ionut Chifan;Adrian Ioana;and Yoshikata Kida;Sho Matsumoto;Yoshikata Kida;松本詔;Yoshikata Kida;松本詔;木田良才 - 通讯作者:
木田良才
Plancherel measures on strict partitions: Polynomiality and limit shape problems
严格划分上的 Plancherel 测量:多项式和极限形状问题
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Ionut Chifan;Adrian Ioana;and Yoshikata Kida;Sho Matsumoto - 通讯作者:
Sho Matsumoto
Inner amenable groups, stable actions, and central extensions
内部顺从的群体、稳定的行动和中心延伸
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Ionut Chifan;Adrian Ioana;and Yoshikata Kida;Sho Matsumoto;Yoshikata Kida;松本詔;Yoshikata Kida - 通讯作者:
Yoshikata Kida
Stability in orbit equivalence, central extensions of groups and relative property (T) I, II
轨道等效稳定性、群中心扩张和相关性质 (T) I、II
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Ionut Chifan;Adrian Ioana;and Yoshikata Kida;Sho Matsumoto;Yoshikata Kida;松本詔;Yoshikata Kida;松本詔;木田良才;松本詔;木田良才 - 通讯作者:
木田良才
$$W^*$$ -Superrigidity for arbitrary actions of central quotients of braid groups
- DOI:
10.1007/s00208-014-1077-8 - 发表时间:
2014-08-13 - 期刊:
- 影响因子:1.400
- 作者:
Ionut Chifan;Adrian Ioana;Yoshikata Kida - 通讯作者:
Yoshikata Kida
Ionut Chifan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ionut Chifan', 18)}}的其他基金
Classification of von Neumann Algebras: Connections and Applications to C*-algebras, Geometric Group Theory and Continuous Model Theory
冯诺依曼代数的分类:与 C* 代数、几何群论和连续模型理论的联系和应用
- 批准号:
2154637 - 财政年份:2022
- 资助金额:
$ 3.59万 - 项目类别:
Standard Grant
FRG: Collaborative Research: von Neumann Algebras Associated to Groups Acting on Hyperbolic Spaces
FRG:合作研究:与作用于双曲空间的群相关的冯诺依曼代数
- 批准号:
1854194 - 财政年份:2019
- 资助金额:
$ 3.59万 - 项目类别:
Standard Grant
Rigidity in von Neumann Algebras: Connections and Applications to Orbit Equivalence, Geometric Group Theory, and Continuous Model Theory
冯·诺依曼代数中的刚性:与轨道等效、几何群论和连续模型理论的联系和应用
- 批准号:
1600688 - 财政年份:2016
- 资助金额:
$ 3.59万 - 项目类别:
Continuing Grant
Thirteenth East Coast Operator Algebra Symposium; October 3 and 4, 2015; University of Iowa
第十三届东海岸算子代数研讨会;
- 批准号:
1546401 - 财政年份:2015
- 资助金额:
$ 3.59万 - 项目类别:
Standard Grant
Rigidity in von Neumann Algebras; Connections and Applications to Orbit Equivalence and Geometric Group Theory
冯·诺依曼代数中的刚性;
- 批准号:
1301370 - 财政年份:2013
- 资助金额:
$ 3.59万 - 项目类别:
Continuing Grant
Rigidity Results in von Neumann Algebras and Orbit Equivalence
冯·诺依曼代数和轨道等效性中的刚性结果
- 批准号:
1001286 - 财政年份:2010
- 资助金额:
$ 3.59万 - 项目类别:
Standard Grant
相似海外基金
Integrating Hamiltonian Effective Field Theory with Lattice QCD and Experimental Results to study Heavy Exotic Hadron Spectroscopy
哈密顿有效场论与晶格 QCD 和实验结果相结合,研究重奇异强子谱
- 批准号:
24K17055 - 财政年份:2024
- 资助金额:
$ 3.59万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The Moral Experience of Families in the Context of Trisomy 13 and 18: Presenting the Results of a Scoping Review
13 号和 18 号三体症背景下家庭的道德体验:介绍范围界定审查的结果
- 批准号:
495166 - 财政年份:2023
- 资助金额:
$ 3.59万 - 项目类别:
Identifying strategies to reveal genetic results over the lifespan
确定揭示一生中遗传结果的策略
- 批准号:
10739918 - 财政年份:2023
- 资助金额:
$ 3.59万 - 项目类别:
FRAMINGHAM HEART STUDY - TASK AREA C - GENETIC RESULTS REPORTING
弗雷明汉心脏研究 - 任务领域 C - 基因结果报告
- 批准号:
10974185 - 财政年份:2023
- 资助金额:
$ 3.59万 - 项目类别:
Early intervention as a determinant of hearing aid benefit for age-related hearing loss: Results from longitudinal cohort studies
早期干预是助听器对年龄相关性听力损失有益的决定因素:纵向队列研究的结果
- 批准号:
10749385 - 财政年份:2023
- 资助金额:
$ 3.59万 - 项目类别:
Collaborative Research: Curating, digitizing and disseminating results from an unparalleled collection of fossil vertebrates from the Late Cretaceous of Madagascar
合作研究:整理、数字化和传播来自马达加斯加白垩纪晚期的无与伦比的脊椎动物化石收藏的结果
- 批准号:
2242717 - 财政年份:2023
- 资助金额:
$ 3.59万 - 项目类别:
Standard Grant
Explaining automated test agents and their test results
解释自动化测试代理及其测试结果
- 批准号:
23K11062 - 财政年份:2023
- 资助金额:
$ 3.59万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Association of D-dimers with Left Ventricular Hypertrophy and Clinical Outcomes in Mild to Moderate Aortic Stenosis: Results from the PROGRESSA Study
D-二聚体与左心室肥厚和轻中度主动脉瓣狭窄临床结果的关联:PROGRESSA 研究结果
- 批准号:
495409 - 财政年份:2023
- 资助金额:
$ 3.59万 - 项目类别:
revAIsor: Revise AI Solutions for Optimal Results
revAIsor:修改人工智能解决方案以获得最佳结果
- 批准号:
10075158 - 财政年份:2023
- 资助金额:
$ 3.59万 - 项目类别:
Grant for R&D
Harvesting Actionable Results for Learning and Instruction: A Novel Mixed Methods Approach to Extracting and Validating Information from Diagnostic Assessment
收获可操作的学习和教学结果:一种从诊断评估中提取和验证信息的新型混合方法
- 批准号:
2300382 - 财政年份:2023
- 资助金额:
$ 3.59万 - 项目类别:
Standard Grant