PREEVENTS Track 2: Cascadia Tsunami Warning with Data Assimilation and Optimal Sensor Distribution
预防轨道 2:卡斯卡迪亚海啸预警与数据同化和最佳传感器分布
基本信息
- 批准号:1855090
- 负责人:
- 金额:$ 36.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-15 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The Cascadia Subduction Zone poses a significant earthquake and tsunami hazard to the densely populated coastal regions of the US Pacific Northwest. The goals of this project are to improve the capability for tsunami warning in this region by several lines of research. The first is to use the method of data assimilation, which takes tsunami wave observations as they arrive at ocean observing points and uses them to forecast the tsunami at the coast. The second is to test the use of ship position data in tsunami warnings. Tsunami waves are small in the open ocean but can cause detectable changes in ship height and heading. These ship data could provide useful information to improve tsunami forecasts. The last aspect of the project is to determine the best spacing of seafloor observing sites for tsunami warnings offshore the US Pacific Northwest. Installing seafloor observing sites is costly, and this study will use mathematical methods to determine the best places for seafloor sensors considering different scenarios. Anticipated results from this project will help inform efforts to design future observation networks offshore Cascadia and other subduction zones for providing earthquake and tsunami early warning capability.The motivation for this project is to improve the speed and accuracy of tsunami warnings and to best design detection arrays for tsunami warning. This project will explore the use of data assimilation and optimal sensor distribution for Cascadia tsunami warning. Multiple ocean-based observational data will be utilized including seafloor pressure recordings from the Cascadia Initiative experiment, National Oceanic and Atmospheric Administration Deep Ocean Assessment and Reporting of Tsunamis (DART) seafloor pressure data, coastal tide gauge data, and sea surface height data from ship-borne Global Navigation Satellite Systems. The emphasis of this work will be on (1) development of data assimilation methods for tsunami warnings by including rapid seismogeodetic source solutions, ship height data, and tsunami-band Green?s functions in addition to dense arrays of seafloor pressure data, (2) examination of the utility of GNSS-derived ship height data for local tsunami warning, and (3) determination of optimal distribution of tsunami sensors in the offshore Cascadia Subduction Zone. Data assimilation is a method that has been used in weather forecasting for years, and uses real-time observations to develop a forecast. Data assimilation is a rapidly developing line of research and has only recently been applied to tsunami studies. In addition to utilizing data assimilation to better forecast tsunamis, this work will explore the optimal spacing of sensors to provide timely and accurate tsunami warnings to the coastal regions. Instead of deploying many stations, which may be prohibitively expensive, an optimal observation network design can be explored through numerical simulations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
卡斯卡迪亚俯冲带对美国太平洋西北部人口稠密的沿海地区构成了重大的地震和海啸危险。该项目的目标是通过多方面的研究提高该地区的海啸预警能力。第一种是使用数据同化方法,即在海啸波观测到达海洋观测点时将其用于预测海岸的海啸。第二个是测试船舶位置数据在海啸警报中的使用。海啸波在开阔的海洋中很小,但可以引起船只高度和航向的可检测变化。这些船舶数据可以为改进海啸预报提供有用的信息。该项目的最后一个方面是确定美国太平洋西北部近海海啸预警海底观测点的最佳间距。安装海底观测站的成本很高,这项研究将使用数学方法来确定考虑不同情况的海底传感器的最佳位置。该项目的预期结果将有助于为设计未来的卡斯卡迪亚和其他俯冲带近海观测网络提供信息,以提供地震和海啸预警能力,该项目的动机是提高海啸预警的速度和准确性,并最好地设计海啸预警探测阵列。该项目将探索使用数据同化和最佳传感器分布进行卡斯卡迪亚海啸预警。将利用多种基于海洋的观测数据,包括卡斯卡迪亚倡议实验的海底压力记录、国家海洋和大气管理局深海评估和海啸报告(DART)海底压力数据、沿海验潮仪数据以及船载全球导航卫星系统的海面高度数据。这项工作的重点将是(1)发展海啸警报的数据同化方法,包括快速地震大地源解决方案,船舶高度数据,和海啸波段绿色?的功能,除了密集阵列的海底压力数据,(2)检查的全球导航卫星系统派生的船舶高度数据的效用,当地海啸预警,和(3)确定海啸传感器的最佳分布在近海卡斯卡迪亚俯冲带。数据同化是一种多年来一直用于天气预报的方法,它使用实时观测来进行预报。数据同化是一个迅速发展的研究领域,直到最近才应用于海啸研究。除了利用数据同化更好地预报海啸外,这项工作还将探讨传感器的最佳间距,以便向沿海地区提供及时和准确的海啸警报。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Multi-fault Model Estimation from Tsunami Data: An Application to the 2018 M7.9 Kodiak Earthquake
- DOI:10.1007/s00024-020-02433-z
- 发表时间:2020-02-05
- 期刊:
- 影响因子:2
- 作者:Hossen, M. Jakir;Sheehan, Anne F.;Satake, Kenji
- 通讯作者:Satake, Kenji
Data Assimilation for Tsunami Forecast With Ship‐Borne GNSS Data in the Cascadia Subduction Zone
利用卡斯卡迪亚俯冲带船载 GNSS 数据进行海啸预报的数据同化
- DOI:10.1029/2020ea001390
- 发表时间:2021
- 期刊:
- 影响因子:3.1
- 作者:Hossen, M. J.;Mulia, Iyan E.;Mencin, David;Sheehan, Anne F.
- 通讯作者:Sheehan, Anne F.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anne Sheehan其他文献
National population exposure and evacuation potential in the United States to earthquake-generated tsunami threats
美国人口面临地震引发的海啸威胁的情况以及疏散潜力
- DOI:
10.1016/j.ijdrr.2025.105511 - 发表时间:
2025-06-01 - 期刊:
- 影响因子:4.500
- 作者:
Nathan Wood;Jeff Peters;Anne Sheehan;Doug Bausch - 通讯作者:
Doug Bausch
Anne Sheehan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anne Sheehan', 18)}}的其他基金
3D Characterization of the Alaska-Aleutian Subduction System with Amphibious Array Interferometry
利用两栖阵列干涉测量法对阿拉斯加-阿留申俯冲系统进行 3D 表征
- 批准号:
1952209 - 财政年份:2020
- 资助金额:
$ 36.06万 - 项目类别:
Standard Grant
Collaborative Research: Revealing the Environment of Shallow Slow Slip
合作研究:揭示浅层慢滑移环境
- 批准号:
1551922 - 财政年份:2016
- 资助金额:
$ 36.06万 - 项目类别:
Standard Grant
GOALI: Seismic interferometry and reflection imaging of the deep crust
目标:地壳深部的地震干涉测量和反射成像
- 批准号:
1451216 - 财政年份:2015
- 资助金额:
$ 36.06万 - 项目类别:
Continuing Grant
Collaborative Research: Hikurangi Ocean Bottom Investigation of Tremor and Slow Slip (HOBITSS)
合作研究:Hikurangi 海底地震和慢滑移调查 (HOBITSS)
- 批准号:
1333025 - 财政年份:2013
- 资助金额:
$ 36.06万 - 项目类别:
Continuing Grant
NSF EAGER: Pilot Study: Deep Electrical Structure of the Rio Grande Rift to Constrain Extent and Mechanisms of Rifting
NSF EAGER:试点研究:里奥格兰德裂谷的深层电结构以限制裂谷的范围和机制
- 批准号:
1249669 - 财政年份:2012
- 资助金额:
$ 36.06万 - 项目类别:
Standard Grant
Collaborative Research: Rio Grande Rift II - Kinematics and Dynamics of Continental Deformation in Low Strain-Rate Environments
合作研究:Rio Grande Rift II - 低应变率环境下大陆变形的运动学和动力学
- 批准号:
1053596 - 财政年份:2011
- 资助金额:
$ 36.06万 - 项目类别:
Continuing Grant
Collaborative Research: Formation of Basement-involved Foreland Arches: An Integrated EarthScope Experiment
合作研究:涉及地下室的前陆拱门的形成:综合 EarthScope 实验
- 批准号:
0843657 - 财政年份:2009
- 资助金额:
$ 36.06万 - 项目类别:
Continuing Grant
Acquisition of Geophysical Computing Facility, University of Colorado/CIRES
收购科罗拉多大学/CIRES 地球物理计算设施
- 批准号:
0733354 - 财政年份:2008
- 资助金额:
$ 36.06万 - 项目类别:
Standard Grant
Himalayan Seismotectonics at Deep Structure
喜马拉雅深部构造地震构造
- 批准号:
0538259 - 财政年份:2006
- 资助金额:
$ 36.06万 - 项目类别:
Standard Grant
Collaborative Research: Constraining Mantle Rheology, Mantle Flow, and Crust/Mantle coupling Beneath New Zealand
合作研究:约束新西兰下方的地幔流变学、地幔流和地壳/地幔耦合
- 批准号:
0409835 - 财政年份:2005
- 资助金额:
$ 36.06万 - 项目类别:
Continuing Grant
相似海外基金
RII Track-4:NSF: Integrated Electrochemical-Optical Microscopy for High Throughput Screening of Electrocatalysts
RII Track-4:NSF:用于高通量筛选电催化剂的集成电化学光学显微镜
- 批准号:
2327025 - 财政年份:2024
- 资助金额:
$ 36.06万 - 项目类别:
Standard Grant
RII Track-4:NSF: Resistively-Detected Electron Spin Resonance in Multilayer Graphene
RII Track-4:NSF:多层石墨烯中电阻检测的电子自旋共振
- 批准号:
2327206 - 财政年份:2024
- 资助金额:
$ 36.06万 - 项目类别:
Standard Grant
RII Track-4:NSF: Improving subseasonal-to-seasonal forecasts of Central Pacific extreme hydrometeorological events and their impacts in Hawaii
RII Track-4:NSF:改进中太平洋极端水文气象事件的次季节到季节预报及其对夏威夷的影响
- 批准号:
2327232 - 财政年份:2024
- 资助金额:
$ 36.06万 - 项目类别:
Standard Grant
RII Track-4:NSF: Design of zeolite-encapsulated metal phthalocyanines catalysts enabled by insights from synchrotron-based X-ray techniques
RII Track-4:NSF:通过基于同步加速器的 X 射线技术的见解实现沸石封装金属酞菁催化剂的设计
- 批准号:
2327267 - 财政年份:2024
- 资助金额:
$ 36.06万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 36.06万 - 项目类别:
Standard Grant
RII Track-4:NSF: In-Situ/Operando Characterizations of Single Atom Catalysts for Clean Fuel Generation
RII Track-4:NSF:用于清洁燃料生成的单原子催化剂的原位/操作表征
- 批准号:
2327349 - 财政年份:2024
- 资助金额:
$ 36.06万 - 项目类别:
Standard Grant
RII Track-4: NSF: Fundamental study on hydrogen flow in porous media during repetitive drainage-imbibition processes and upscaling for underground energy storage
RII Track-4:NSF:重复排水-自吸过程中多孔介质中氢气流动的基础研究以及地下储能的升级
- 批准号:
2327317 - 财政年份:2024
- 资助金额:
$ 36.06万 - 项目类别:
Standard Grant
RII Track-4:@NASA: Wind-induced noise in the prospective seismic data measured in the Venusian surface environment
RII Track-4:@NASA:金星表面环境中测量的预期地震数据中的风致噪声
- 批准号:
2327422 - 财政年份:2024
- 资助金额:
$ 36.06万 - 项目类别:
Standard Grant
RII Track-4:NSF: An Integrated Urban Meteorological and Building Stock Modeling Framework to Enhance City-level Building Energy Use Predictions
RII Track-4:NSF:综合城市气象和建筑群建模框架,以增强城市级建筑能源使用预测
- 批准号:
2327435 - 财政年份:2024
- 资助金额:
$ 36.06万 - 项目类别:
Standard Grant
RII Track-4: NSF: Developing 3D Models of Live-Endothelial Cell Dynamics with Application Appropriate Validation
RII Track-4:NSF:开发活内皮细胞动力学的 3D 模型并进行适当的应用验证
- 批准号:
2327466 - 财政年份:2024
- 资助金额:
$ 36.06万 - 项目类别:
Standard Grant