Efficient Modeling of Fluid-Structure Interaction in Flapping, Flexible Wings for Real-Time Control and Parametric Design
扑动柔性机翼中流固耦合的高效建模,用于实时控制和参数化设计
基本信息
- 批准号:1855383
- 负责人:
- 金额:$ 37.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Flexible flapping wings are an important component in several developing technologies with potential to benefit national infrastructure and welfare. For example, miniature robotic vehicles with flapping wings could be deployed to identify leaks in dense networks of pipes, to survey air quality, or even to artificially pollinate crops. Flapping wings could also be used to harvest energy and thus power a sensor network for specific applications. However, engineering tools are not sufficiently evolved to utilize flexible flapping wings for these emerging technologies. Methods currently used to predict the physics of flapping wings are inefficient, often requiring long time to estimate the performance of just a single flapping wing system. As such, they cannot be used for real-time control applications where the system must adapt rapidly to dynamic environmental conditions. The primary goal of this award is therefore to develop efficient and rapid experimental methods to predict the physics governing flapping flexible wings. Such methods will advance the design for flapping wing technologies. This award will support American Indian students recruited through Montana State University's EMPower program. It will also promote science, technology, engineering and math fields through public outreach activities including Montana State Family Science Day and National Biomechanics Day. This project specifically aims to realize a reduced-order fluid-structure interaction model of flapping wings. Conventional fluid-structure interaction models rely on coupled finite element and computational fluid dynamics solvers, both which require considerable computational resources. Existing low-order approaches are typically restricted to rigid wings and cannot account for the aerodynamic forces that result from elastic structural deformation. The model developed through this work will deliver solution accuracy near that of high-fidelity solvers with the computational efficiency achieved by low-order methods. This model will be applied to study both artificial wings as well as real insect wings and will be realized by accomplishing the following objectives. First, wings will be geometrically, structurally, and aerodynamically characterized via a combination of micro-computed-tomography scans, computational fluid dynamics, experimental modal analysis, and model updating routines. Second, the fluid-structure interaction framework will be derived using a novel deformable blade element momentum approach. Deformed wing aerodynamics are accounted for efficiently through a predetermined look-up table of coefficients and dynamic correction factors that will be incorporated into the quasi-steady model as necessary. This low-order model will initially be benchmarked against direct high-fidelity computational simulation. Third, the model will be validated experimentally. A linkage mechanism will be used to generate flapping kinematics. Wing strain, aerodynamic forces and torques will be measured and compared to theoretic predictions. The expected outcome of this project is a robust fluid-structure interaction framework capable of supporting real-time control as well as parametric design of flapping, flexible wing technologies.This project is jointly funded by CBET-Fluid Dynamics, the Established Program to Stimulate Competitive Research (EPSCoR), and BIO-IOS programs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
柔性扑翼是一些发展中技术的重要组成部分,有可能造福国家基础设施和福利。例如,可以部署带有扇动翅膀的微型机器人车辆来识别密集管道网络中的泄漏,调查空气质量,甚至人工授粉作物。拍打翅膀也可以用来收集能量,从而为特定应用的传感器网络提供动力。然而,工程工具还没有发展到足以利用柔性扑翼来实现这些新兴技术。目前用于预测扑翼物理特性的方法效率低下,通常需要很长时间来估计单个扑翼系统的性能。因此,它们不能用于系统必须快速适应动态环境条件的实时控制应用。因此,该奖项的主要目标是开发有效和快速的实验方法来预测控制扑动柔性机翼的物理特性。这些方法将推动扑翼技术的发展。该奖项将支持通过蒙大拿州立大学EMPower项目招收的美国印第安学生。它还将通过公共宣传活动,包括蒙大拿州家庭科学日和国家生物力学日,促进科学、技术、工程和数学领域的发展。本课题的具体目标是实现扑翼的降阶流固耦合模型。传统的流固耦合模型依赖于耦合有限元和计算流体动力学求解,两者都需要大量的计算资源。现有的低阶方法通常局限于刚性机翼,无法解释由弹性结构变形引起的气动力。通过这项工作开发的模型将提供接近高保真度解算器的解精度,并实现低阶方法的计算效率。该模型将应用于研究人工翅膀和真实昆虫翅膀,并将通过实现以下目标来实现。首先,机翼将通过微型计算机断层扫描、计算流体动力学、实验模态分析和模型更新程序进行几何、结构和空气动力学特征分析。其次,将采用一种新的可变形叶片单元动量方法推导流固耦合框架。变形机翼空气动力学计算[&;#64259;]通过预先确定的coe&;#64259;必要时将纳入准稳定模型的客户和动态校正因子。这个低阶模型将首先与直接的高保真计算模拟进行基准测试。第三,对模型进行实验验证。一个连杆机构将被用来产生扑动运动学。将测量机翼应变、气动力和扭矩,并与理论预测进行比较。该项目的预期结果是一个鲁棒的流固耦合框架,能够支持扑翼、柔性翼技术的实时控制和参数化设计。该项目由cbet流体动力学,建立计划刺激竞争研究(EPSCoR)和BIO-IOS项目共同资助。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Measuring the frequency response of the honeybee thorax
- DOI:10.1088/1748-3190/ab835b
- 发表时间:2020-07-01
- 期刊:
- 影响因子:3.4
- 作者:Jankauski, Mark A.
- 通讯作者:Jankauski, Mark A.
Wing flexibility reduces the energetic requirements of insect flight
- DOI:10.1088/1748-3190/ab2dbc
- 发表时间:2019-09-01
- 期刊:
- 影响因子:3.4
- 作者:Reid, Heidi E.;Schwab, Ryan K.;Jankauski, Mark
- 通讯作者:Jankauski, Mark
Reduced-Order Modeling and Experimental Studies of Two-Way Coupled Fluid-Structure Interaction in Flapping Wings
扑翼双向耦合流固耦合的降阶建模与实验研究
- DOI:10.1115/detc2019-98291
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Schwab, Ryan K.;Reid, Heidi E.;Jankauski, Mark A.
- 通讯作者:Jankauski, Mark A.
Toward the design of dynamically similar artificial insect wings
- DOI:10.1177/1756829321992138
- 发表时间:2021-01
- 期刊:
- 影响因子:1.4
- 作者:Heidi E. Reid;Huimin Zhou;Miles Maxcer;Robert K. D. Peterson;Jia Deng;Mark A. Jankauski
- 通讯作者:Heidi E. Reid;Huimin Zhou;Miles Maxcer;Robert K. D. Peterson;Jia Deng;Mark A. Jankauski
Quasi three-dimensional deformable blade element and unsteady vortex lattice reduced-order modeling of fluid–structure interaction in flapping wings
扑翼流固相互作用的准三维变形叶片单元和非定常涡晶格降阶建模
- DOI:10.1063/5.0129128
- 发表时间:2022
- 期刊:
- 影响因子:4.6
- 作者:Schwab, R.;Reade, J.;Jankauski, M.
- 通讯作者:Jankauski, M.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Jankauski其他文献
Vibration mechanics involved in buzz pollination lead to size-dependent associations between bumblebees and Pedicularis flowers
- DOI:
10.1007/s11427-024-2858-5 - 发表时间:
2025-03-12 - 期刊:
- 影响因子:9.500
- 作者:
Yuanqing Xu;Bentao Wu;Mario Vallejo-Marín;Peter Bernhardt;Mark Jankauski;De-Zhu Li;Stephen Buchmann;Jianing Wu;Hong Wang - 通讯作者:
Hong Wang
Mark Jankauski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Jankauski', 18)}}的其他基金
Investigating the Mechanics of Buzz Pollination: A Structural Dynamics Perspective
研究蜂鸣授粉的机制:结构动力学视角
- 批准号:
2221908 - 财政年份:2022
- 资助金额:
$ 37.02万 - 项目类别:
Standard Grant
CAREER: Understanding Intelligent Morphology and Enhancing Bio-Inspired Design through System-Level Modeling of the Insect Flight Mechanism
职业:通过昆虫飞行机制的系统级建模了解智能形态并增强仿生设计
- 批准号:
1942810 - 财政年份:2020
- 资助金额:
$ 37.02万 - 项目类别:
Standard Grant
相似国自然基金
Galaxy Analytical Modeling
Evolution (GAME) and cosmological
hydrodynamic simulations.
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
CAREER: Deciphering Cavitation in Fluid-Filled Cracks and its Induced Seismicity through Integrated Physical Modeling
职业:通过集成物理模型解释充满流体的裂缝中的空化及其诱发的地震活动
- 批准号:
2235515 - 财政年份:2023
- 资助金额:
$ 37.02万 - 项目类别:
Continuing Grant
Patient specific computational modeling of fluid-structure interactions of cerebrospinal fluid for biomarkers in Alzheimer's disease
阿尔茨海默病生物标志物脑脊液流固相互作用的患者特定计算模型
- 批准号:
10644281 - 财政年份:2023
- 资助金额:
$ 37.02万 - 项目类别:
Multi-scale modeling of thermal and fluid flow of cryogenic liquid hydrogen applied for liquid rocket propulsion system
用于液体火箭推进系统的低温液氢热流和流体流的多尺度建模
- 批准号:
23H01606 - 财政年份:2023
- 资助金额:
$ 37.02万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: Experiments and Modeling of the Fluid Flow of Beating Eukaryotic Flagella
合作研究:真核鞭毛跳动流体流动的实验和建模
- 批准号:
2242095 - 财政年份:2023
- 资助金额:
$ 37.02万 - 项目类别:
Standard Grant
eMB: Collaborative Research: Fluid Dynamics and Infectious Diseases: An Integrated Modeling Framework
eMB:协作研究:流体动力学和传染病:集成建模框架
- 批准号:
2324691 - 财政年份:2023
- 资助金额:
$ 37.02万 - 项目类别:
Standard Grant
eMB: Collaborative Research: Fluid Dynamics and Infectious Diseases: An Integrated Modeling Framework
eMB:协作研究:流体动力学和传染病:集成建模框架
- 批准号:
2324692 - 财政年份:2023
- 资助金额:
$ 37.02万 - 项目类别:
Standard Grant
Prediction of endovascular treatment effectiveness for cerebral aneurysms using computational fluid dynamics with porous media modeling
使用计算流体动力学和多孔介质模型预测脑动脉瘤的血管内治疗效果
- 批准号:
23K15665 - 财政年份:2023
- 资助金额:
$ 37.02万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Experiments and Modeling of the Fluid Flow of Beating Eukaryotic Flagella
合作研究:真核鞭毛跳动流体流动的实验和建模
- 批准号:
2242096 - 财政年份:2023
- 资助金额:
$ 37.02万 - 项目类别:
Standard Grant
A Novel Framework for Model Reduction and Data-Driven Modeling of Fluid-Structure System: Application to Flapping Dynamics
流固系统模型简化和数据驱动建模的新框架:在扑动动力学中的应用
- 批准号:
RGPIN-2019-05065 - 财政年份:2022
- 资助金额:
$ 37.02万 - 项目类别:
Discovery Grants Program - Individual
Computational and theoretical fluid mechanics modeling for transport in dense tumors
致密肿瘤中运输的计算和理论流体力学模型
- 批准号:
10816198 - 财政年份:2022
- 资助金额:
$ 37.02万 - 项目类别: