Collaborative Research: Experiments and Modeling of the Fluid Flow of Beating Eukaryotic Flagella

合作研究:真核鞭毛跳动流体流动的实验和建模

基本信息

  • 批准号:
    2242096
  • 负责人:
  • 金额:
    $ 29.72万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

Flagella and cilia are thin hair-like cellular structures which play an essential role in many basic life processes. By beating rhythmically, flagella and cilia move fluid in the local environment of cells. This biological function enables pulmonary mucus clearance in airways and the transport of ovums from the ovary to the uterus for example. Malfunction of flagella and cilia can lead to a group of serious human disorders, ciliopathies, which cause a heavy economic and disease burden on society. However, despite the ubiquity and importance of flagella and cilia, fundamental biomechanics underlying the fluid transport of beating flagella and cilia are still poorly understood. Particularly, the detailed flow field induced by beating flagella and cilia remains unresolved. Combining state-of-the-art microscopy techniques with data-driven machine learning, the research team aims to address this difficult biomechanical problem. This research will investigate the flow field of healthy flagella as well as those of mutant flagella associated with ciliopathies using synergistic experimental and numerical modeling efforts. A potential solution to remedy the flow deficiency of malfunction flagella will be researched. In addition to the training and research opportunities for undergraduate and graduate students, the project will produce appealing scientific videos and demonstrations to enhance the undergraduate curriculum and enrich outreach activities at the local communities of the two principal investigators. As a generic model for the morphology and dynamics of flagella and cilia, green algae Chlamydomonas reinhardtii, will be studied in this research program. Optical microscopy will be used to track the three-dimensional (3D) fluid flow around the beating flagella of a single alga at micron scales with sub-millisecond temporal resolutions. Both wild-type and mutant algae of different swimming modes will be investigated. The mechanical efficiency of flagellar dynamics will be analyzed based on the 3D flow field. Moreover, using the experimental flow field as a basis of reference and taking advantage of modern machine-learning algorithms, the team plans to develop a numerical model of maximal simplicity that can quantitatively capture the algal flow. The model will facilitate the study of the optimization and synchronization of flagellar dynamics and the collective dynamics of algal suspensions. Through the collaborative experimental and modeling efforts, the missing link between the flagellar dynamics and the resulting microscopic fluid flow will be revealed by this research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
鞭毛和纤毛是细的毛发状细胞结构,在许多基本生命过程中起着重要作用。通过有节奏地跳动,鞭毛和纤毛在细胞的局部环境中移动液体。这种生物学功能使肺粘液在气道中清除,并将卵子从卵巢运输到子宫。鞭毛和纤毛的功能异常可导致一组严重的人类疾病,即纤毛病,给社会造成沉重的经济和疾病负担。然而,尽管鞭毛和纤毛的普遍性和重要性,基本的生物力学基础的流体运输殴打鞭毛和纤毛仍然知之甚少。特别是,详细的流场诱导殴打鞭毛和纤毛仍然没有得到解决。将最先进的显微镜技术与数据驱动的机器学习相结合,研究团队旨在解决这一困难的生物力学问题。本研究将探讨健康鞭毛的流场,以及与纤毛病变相关的突变鞭毛使用协同实验和数值模拟的努力。一个潜在的解决方案,以弥补流量不足的故障鞭毛将研究。除了为本科生和研究生提供培训和研究机会外,该项目还将制作有吸引力的科学视频和演示,以加强本科生课程,丰富两位主要调查员在当地社区的外联活动。 作为鞭毛和纤毛的形态和动力学的通用模型,绿色藻类莱茵衣藻,将在本研究计划中进行研究。光学显微镜将被用来跟踪三维(3D)流体流动周围的跳动鞭毛的一个单一的微尺度与亚毫秒的时间分辨率。本研究将探讨不同游动模式的野生型及突变藻。基于三维流场分析鞭毛动力学的机械效率。此外,利用实验流场作为参考基础,并利用现代机器学习算法,该团队计划开发一个最简单的数值模型,可以定量捕获藻类流。该模型将有助于鞭毛动力学和藻类悬浮液集体动力学的优化和同步研究。通过合作实验和建模的努力,鞭毛动力学和由此产生的微观流体流动之间的缺失环节将被揭示由本research.This奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xin Yong其他文献

Molecular Dynamics Modeling of Pseudomonas Aeruginosa Biological Membrane
  • DOI:
    10.1016/j.bpj.2017.11.1555
  • 发表时间:
    2018-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Ao Li;Xin Yong
  • 通讯作者:
    Xin Yong
Study on Dynamic Voltage Restorer Switching Algorithm
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xin Yong
  • 通讯作者:
    Xin Yong
Accurate molecular dynamics modeling of <em>Pseudomonas aeruginosa</em> outer membrane interaction with signaling molecules
  • DOI:
    10.1016/j.bpj.2022.11.1347
  • 发表时间:
    2023-02-10
  • 期刊:
  • 影响因子:
  • 作者:
    Emad Pirhadi;Citrupa Gopal;Hasan Al Tarify;Juan M. Vanegas;Jeffrey W. Schertzer;Xin Yong
  • 通讯作者:
    Xin Yong
Modeling the Assembly of Polymer-Grafted Nanoparticles at Oil-Water Interfaces.
A novel dilution strategy for tuning Janus particle morphology
一种用于调控两面神粒子形态的新型稀释策略
  • DOI:
    10.1016/j.jcis.2025.137613
  • 发表时间:
    2025-09-01
  • 期刊:
  • 影响因子:
    9.700
  • 作者:
    Yifan Li;Emad Pirhadi;Serkan Demirci;Utsav Kumar Dey;Thamer Rawah;Aneeba Chaudary;Ricardo Ortega;Connor Thorpe;Bingrui Huang;Xin Yong;Shan Jiang
  • 通讯作者:
    Shan Jiang

Xin Yong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xin Yong', 18)}}的其他基金

Collaborative Research: Understanding "wild-type" nanoplastic uptake in single microalgae cells with fluorescence tracking and computational modeling
合作研究:通过荧光跟踪和计算建模了解单个微藻细胞对“野生型”纳米塑料的吸收
  • 批准号:
    2034855
  • 财政年份:
    2021
  • 资助金额:
    $ 29.72万
  • 项目类别:
    Standard Grant
Capillary-Assisted Printing of Structured Colloidal Monolayers
结构化胶体单层的毛细管辅助打印
  • 批准号:
    1939362
  • 财政年份:
    2020
  • 资助金额:
    $ 29.72万
  • 项目类别:
    Standard Grant
Inkjet-Electrospray Hybrid Printing: Understanding the Processing-Structure Relationship
喷墨-电喷雾混合印刷:了解加工与结构的关系
  • 批准号:
    1538090
  • 财政年份:
    2015
  • 资助金额:
    $ 29.72万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
  • 批准号:
    2331294
  • 财政年份:
    2024
  • 资助金额:
    $ 29.72万
  • 项目类别:
    Standard Grant
Collaborative Research: Design Decisions under Competition at the Edge of Bounded Rationality: Quantification, Models, and Experiments
协作研究:有限理性边缘竞争下的设计决策:量化、模型和实验
  • 批准号:
    2419423
  • 财政年份:
    2024
  • 资助金额:
    $ 29.72万
  • 项目类别:
    Standard Grant
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
  • 批准号:
    2331295
  • 财政年份:
    2024
  • 资助金额:
    $ 29.72万
  • 项目类别:
    Standard Grant
Collaborative Research: Time-Sharing Experiments for the Social Sciences (TESS): Proposal for Renewed Support, 2020-2023
合作研究:社会科学分时实验(TESS):2020-2023 年更新支持提案
  • 批准号:
    2424057
  • 财政年份:
    2024
  • 资助金额:
    $ 29.72万
  • 项目类别:
    Continuing Grant
Collaborative Research: The impact of instruction on student thinking about measurement in classical and quantum mechanics experiments
合作研究:教学对学生思考经典和量子力学实验中的测量的影响
  • 批准号:
    2336135
  • 财政年份:
    2024
  • 资助金额:
    $ 29.72万
  • 项目类别:
    Standard Grant
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
  • 批准号:
    2331296
  • 财政年份:
    2024
  • 资助金额:
    $ 29.72万
  • 项目类别:
    Standard Grant
Collaborative Research: Sea-state-dependent drag parameterization through experiments and data-driven modeling
合作研究:通过实验和数据驱动建模进行与海况相关的阻力参数化
  • 批准号:
    2404369
  • 财政年份:
    2024
  • 资助金额:
    $ 29.72万
  • 项目类别:
    Standard Grant
Collaborative Research: Sea-state-dependent drag parameterization through experiments and data-driven modeling
合作研究:通过实验和数据驱动建模进行与海况相关的阻力参数化
  • 批准号:
    2404368
  • 财政年份:
    2024
  • 资助金额:
    $ 29.72万
  • 项目类别:
    Standard Grant
Collaborative Research: The impact of instruction on student thinking about measurement in classical and quantum mechanics experiments
合作研究:教学对学生思考经典和量子力学实验中的测量的影响
  • 批准号:
    2336136
  • 财政年份:
    2024
  • 资助金额:
    $ 29.72万
  • 项目类别:
    Standard Grant
Collaborative Research: Integrated experiments and simulations to understand the mechanism and consequences of polymer adsorption in films and nanocomposites
合作研究:综合实验和模拟来了解薄膜和纳米复合材料中聚合物吸附的机制和后果
  • 批准号:
    2312325
  • 财政年份:
    2023
  • 资助金额:
    $ 29.72万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了