Investigating the Mechanics of Buzz Pollination: A Structural Dynamics Perspective
研究蜂鸣授粉的机制:结构动力学视角
基本信息
- 批准号:2221908
- 负责人:
- 金额:$ 54.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This grant will fund research that enables a better understanding of how bees extract pollen from flowers, with application to the design of artificial pollination systems for reducing costs and enhancing yields of agricultural crops that depend on dwindling numbers of natural pollinators, thereby promoting the progress of science and advancing the national prosperity and welfare. Economically valuable crops such as tomatoes, chilies, and eggplant rely for reproduction on native bee populations performing a behavior called buzz pollination, in which a bee lands on a flower stamen (male reproductive organ) and rapidly vibrates it to release its pollen. This pollen is collected on the bee’s abdomen and may be transferred to the pistil (female reproductive organ) of another flower as the bee continues to forage. While buzz pollination is critical to food security, the mechanical processes by which pollen are released by the flower are poorly understood. This knowledge gap stands in the way of the development of new technologies that may supplement natural pollinators in agricultural settings. In this project, this challenge is overcome by a systematic development of high-fidelity, data-driven models of the structural mechanics of deformable stamens and the dynamics of pollen expulsion using physical experiments and advanced computational analysis. Concurrent development of buzz pollination workshops, video, and other resources for the public will increase the accessibility of this research.This research aims to quantify the structural deformation response of floral stamens under dynamic loads induced by a bee and the subsequent expulsion of pollen due to stamen vibrations and induced aerodynamic flows. This project will provide critical insight into how the vibratory forces imparted by buzz-pollinating bees are optimized to maximize pollen release. First, experimental studies will be conducted to quantify the forces imparted by buzz-pollinating bees and to measure how floral stamens respond to such forces. Finite-element models of stamens will then be created and refined such that they accurately predict previously measured dynamic responses. Finally, computational models of pollen expulsion will be developed using the discrete-element method and moving boundary conditions prescribed from finite element modeling of the stamen. These pollen expulsion models will consider particle kinetics, adhesion, friction, and viscous aerodynamics. Pollen particle parameters will be identified via a combination of atomic force and optical microscopy. Parametric studies will reveal which physical phenomena are most critical to pollen expulsion.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这笔资金将用于研究蜜蜂如何从花朵中提取花粉,并应用于人工授粉系统的设计,以降低成本,提高依赖自然传粉者数量减少的农作物的产量,从而促进科学进步,促进国家繁荣和福利。有经济价值的作物,如西红柿、辣椒和茄子,依靠本地蜜蜂种群进行嗡嗡授粉,蜜蜂降落在雄蕊(雄性生殖器官)上,迅速振动雄蕊以释放花粉。这些花粉收集在蜜蜂的腹部,当蜜蜂继续觅食时,可能会转移到另一朵花的雌蕊(雌性生殖器官)。虽然蜂鸣声授粉对粮食安全至关重要,但人们对蜂鸣花释放花粉的机械过程知之甚少。这种知识差距阻碍了新技术的发展,这些新技术可能会补充农业环境中的自然传粉媒介。在这个项目中,这一挑战是通过系统地开发高保真度,数据驱动的变形雄蕊结构力学模型和使用物理实验和先进的计算分析花粉排出动力学来克服的。同时为公众开发蜂群授粉研讨会、视频和其他资源,将增加这项研究的可及性。本研究旨在量化蜜蜂诱导的动态载荷下花蕊的结构变形响应,以及随后由于雄蕊振动和诱导的气动流动而导致的花粉排出。这个项目将提供关键的洞察如何振动力传授蜂群传粉的蜜蜂被优化,以最大限度地释放花粉。首先,将进行实验研究,以量化蜂群授粉所传递的力量,并测量花蕊对这种力量的反应。然后将创建和完善雄蕊的有限元模型,以便准确预测先前测量的动态响应。最后,将使用离散元方法和由雄蕊有限元建模规定的移动边界条件建立花粉排出的计算模型。这些花粉排出模型将考虑颗粒动力学,粘附,摩擦和粘性空气动力学。花粉颗粒参数将通过原子力和光学显微镜的组合来确定。参数化研究将揭示哪些物理现象对花粉排出最为关键。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Jankauski其他文献
Vibration mechanics involved in buzz pollination lead to size-dependent associations between bumblebees and Pedicularis flowers
- DOI:
10.1007/s11427-024-2858-5 - 发表时间:
2025-03-12 - 期刊:
- 影响因子:9.500
- 作者:
Yuanqing Xu;Bentao Wu;Mario Vallejo-Marín;Peter Bernhardt;Mark Jankauski;De-Zhu Li;Stephen Buchmann;Jianing Wu;Hong Wang - 通讯作者:
Hong Wang
Mark Jankauski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Jankauski', 18)}}的其他基金
CAREER: Understanding Intelligent Morphology and Enhancing Bio-Inspired Design through System-Level Modeling of the Insect Flight Mechanism
职业:通过昆虫飞行机制的系统级建模了解智能形态并增强仿生设计
- 批准号:
1942810 - 财政年份:2020
- 资助金额:
$ 54.45万 - 项目类别:
Standard Grant
Efficient Modeling of Fluid-Structure Interaction in Flapping, Flexible Wings for Real-Time Control and Parametric Design
扑动柔性机翼中流固耦合的高效建模,用于实时控制和参数化设计
- 批准号:
1855383 - 财政年份:2019
- 资助金额:
$ 54.45万 - 项目类别:
Standard Grant
相似国自然基金
Science China-Physics, Mechanics & Astronomy
- 批准号:11224804
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Collaborative Research: Mechanics of Optimal Biomimetic Torene Plates and Shells with Ultra-high Genus
合作研究:超高属度最优仿生Torene板壳力学
- 批准号:
2323415 - 财政年份:2024
- 资助金额:
$ 54.45万 - 项目类别:
Standard Grant
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
- 批准号:
2331294 - 财政年份:2024
- 资助金额:
$ 54.45万 - 项目类别:
Standard Grant
CAREER: The Contagion Science: Integration of inhaled transport mechanics principles inside the human upper respiratory tract at multi scales
职业:传染病科学:在多尺度上整合人类上呼吸道内的吸入运输力学原理
- 批准号:
2339001 - 财政年份:2024
- 资助金额:
$ 54.45万 - 项目类别:
Continuing Grant
Exploration of the Nonequilibrium Statistical Mechanics of Turbulent Collisionless Plasmas
湍流无碰撞等离子体的非平衡统计力学探索
- 批准号:
2409316 - 财政年份:2024
- 资助金额:
$ 54.45万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2413579 - 财政年份:2024
- 资助金额:
$ 54.45万 - 项目类别:
Standard Grant
CLIMA: Nimble, Adaptive, and Reusable Structures (NARS): Systems, Mechanics, and Financing
CLIMA:灵活、自适应和可重复使用的结构 (NARS):系统、力学和融资
- 批准号:
2331994 - 财政年份:2024
- 资助金额:
$ 54.45万 - 项目类别:
Standard Grant
Unravelling coupling between multiscale tissue mechanics and heart valve calcification
揭示多尺度组织力学与心脏瓣膜钙化之间的耦合
- 批准号:
EP/X027163/2 - 财政年份:2024
- 资助金额:
$ 54.45万 - 项目类别:
Fellowship
The mechanics of pollinator attraction: development and function of floral diffraction gratings
传粉媒介吸引机制:花衍射光栅的发展和功能
- 批准号:
BB/Y003896/1 - 财政年份:2024
- 资助金额:
$ 54.45万 - 项目类别:
Research Grant
Towards preservation of the natural knee: State-of-the-art approaches to understand the kinematics and tissue mechanics of human menisci in vivo.
保护自然膝盖:了解体内人体半月板运动学和组织力学的最先进方法。
- 批准号:
EP/Y002415/1 - 财政年份:2024
- 资助金额:
$ 54.45万 - 项目类别:
Research Grant
4D Printed Origami Structures: Deformation Mechanisms and Mechanics
4D 打印折纸结构:变形机制和力学
- 批准号:
DP240103328 - 财政年份:2024
- 资助金额:
$ 54.45万 - 项目类别:
Discovery Projects