Computational and Theoretical Modeling of Active Nematics in 3D and Under Confinement
3D 和约束下主动向列相的计算和理论建模
基本信息
- 批准号:1855914
- 负责人:
- 金额:$ 39.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NONTECHNICAL SUMMARYThis award supports theoretical and computational modeling of active materials and related educational activities. Active materials are made from components that can use energy from their local environment to propel themselves. This capability enables active materials to have properties which are not possible in traditional materials. Examples of naturally occurring active materials are found within biological cells, and these materials enable cells to perform functions such as moving, replicating themselves, and healing of wounds. Recent experimental advances are now making it possible to construct artificial active materials, that potentially could have similar capabilities. However, the current theoretical understanding of active materials is incomplete. Improving this theory will guide the design of novel artificial materials, and will help to understand biological processes such as organismal development, cell motility, and cancer growth. This award will support research aimed at making progress towards such a theory. The PI will develop theoretical and computational models for a recently developed experimental artificial active material made from biological filaments and molecular motor proteins. The models will describe how the system behaves when it is confined in a variety of geometries, such as within channels or spherical droplets. The accuracy of the theoretical and computational models will be assessed by testing model predictions against data from experiments in the same confinement geometries. Goals of the research include understanding how the individual components of an active material work collectively to enable behaviors such as large-scale motions, and how propulsion affects the structural order of the system. The supported research will provide valuable science, technology, engineering, and mathematical (STEM) training for undergraduate and graduate students at the interface between mathematical methods and theoretical and experimental soft matter physics. Research activities include training programs that are designed to engage diverse students in computational research, and to provide instruction in scientific communication to specialized and non-specialized audiences. The award also supports public outreach programs that use the spectacular visual effects that arise in active matter simulations and experiments to excite the interest of lay audiences in scientific research. TECHNICAL SUMMARYThis award supports theoretical and computational modeling of active materials and related educational activities. Active matter describes intrinsically non-equilibrium materials whose constituent elements consume energy to generate forces and motion. For example, the consumption of ATP by molecules within a biological cell enables it to perform diverse functions such as motion, replication, and self-healing. It is now possible to construct artificial active materials from biomolecules or synthetic colloids which have a similar capability to convert energy to motion. These building blocks could enable a new class of soft materials, with functionalities currently found only in biological organisms. However, the current theoretical understanding of active matter is far from complete. Developing such a theory is crucial to enable rational design of novel artificial active materials, and would elucidate biological processes such as organismal development, cell motility, and cancer growth, and would enable rational design of novel artificial active materials.This award will support research aimed at progressing toward such a theory, by developing theoretical and computational models motivated by a model active material developed by experimental collaborators - a three-dimensional (3D) "active nematic" constructed from a suspension of microtubules and motor proteins. The PI will develop continuum hydrodynamic models of 3D active nematics, and use recently developed numerical methods to solve them in a variety of confinement geometries. The continuum models will be linked to particle-based simulations that probe how energy generated at the particle scale dissipates into larger scale modes. A particular focus of the research will be elucidating the structure of topological defects in 3D, and how they power emergent dynamics. Model predictions will be extensively tested against the experimental 3D active nematics system. The research will build on the current theoretical understanding of active matter by overcoming the following limitations: (1) Most real-world applications require 3D materials, but to date almost all controllable experimental active systems have been 2D or quasi-2D. Thus, the current theoretical understanding of active matter is largely limited to 2D. (2) While boundaries can usually be neglected in an equilibrium theory, they have profound, long-ranged effects on active matter. Thus, models for active matter must treat boundaries explicitly and with appropriate boundary conditions. (3) Energy input at the particle scale in an active system cascades continuously to larger scales, making it difficult to identify a separation of scales that can be exploited to simplify theoretical descriptions. Thus, models that link the microscale force generation units to large-scale descriptions of collective behaviors are needed. The supported research will provide valuable science, technology, engineering, and mathematical (STEM) training for undergraduate and graduate students at the interface between mathematical methods and theoretical and experimental soft matter physics. Research activities include training programs that are designed to engage diverse students in computational research, and to provide instruction in scientific communication to specialized and non-specialized audiences. The award also supports public outreach programs that use the spectacular visual effects that arise in active matter simulations and experiments to excite the interest of lay audiences in scientific research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持活性材料的理论和计算建模以及相关的教育活动。活性材料是由可以利用当地环境的能量来推动自身的组件制成的。这种能力使活性材料具有传统材料不可能具有的特性。在生物细胞中发现了天然存在的活性物质的例子,这些物质使细胞能够执行诸如移动、自我复制和伤口愈合等功能。最近的实验进展使人造活性材料成为可能,这种材料可能具有类似的能力。然而,目前对活性物质的理论认识是不完整的。改进这一理论将指导新型人工材料的设计,并将有助于理解生物过程,如有机体发育、细胞运动和癌症生长。该奖项将支持旨在朝着这一理论取得进展的研究。PI将为最近开发的一种由生物细丝和分子马达蛋白制成的实验性人工活性材料开发理论和计算模型。这些模型将描述当系统被限制在各种几何形状时的行为,例如在通道或球形液滴内。理论模型和计算模型的准确性将通过对相同约束几何的实验数据进行模型预测来评估。该研究的目标包括了解活性材料的各个组成部分如何共同工作以实现诸如大规模运动之类的行为,以及推进如何影响系统的结构顺序。支持的研究将在数学方法与理论和实验软物质物理之间的接口为本科生和研究生提供有价值的科学,技术,工程和数学(STEM)培训。研究活动包括训练计划,旨在让不同的学生参与计算研究,并向专业和非专业受众提供科学交流方面的指导。该奖项还支持利用活跃物质模拟和实验中产生的壮观视觉效果来激发外行观众对科学研究兴趣的公共宣传项目。该奖项支持活性材料的理论和计算建模以及相关的教育活动。活性物质描述本质上不平衡的物质,其组成元素消耗能量来产生力和运动。例如,生物细胞内分子对ATP的消耗使其能够执行各种功能,如运动、复制和自我修复。现在有可能从生物分子或合成胶体中构建人工活性材料,它们具有将能量转化为运动的类似能力。这些构建模块可以实现一类新的软材料,其功能目前仅在生物有机体中发现。然而,目前对活性物质的理论认识还远远不够完善。发展这样一种理论对于合理设计新型人工活性材料至关重要,并将阐明生物过程,如有机体发育、细胞运动和癌症生长,并将使新型人工活性材料的合理设计成为可能。该奖项将支持旨在推进这一理论的研究,通过开发由实验合作者开发的模型活性材料驱动的理论和计算模型-由微管和运动蛋白悬浮液构建的三维(3D)“活性向列”。PI将开发三维主动向列方程组的连续流体动力学模型,并使用最近开发的数值方法在各种约束几何中求解它们。连续体模型将与基于粒子的模拟相联系,以探索在粒子尺度上产生的能量如何消散到更大的尺度模式。研究的一个特别重点将是阐明三维拓扑缺陷的结构,以及它们如何推动新兴动力学。模型预测将针对实验性三维主动向列方程组进行广泛测试。该研究将建立在目前对活性物质的理论认识的基础上,克服以下局限性:(1)大多数实际应用需要3D材料,但迄今为止几乎所有可控的实验活性物质系统都是二维或准二维的。因此,目前对活性物质的理论认识主要局限于二维。(2)虽然边界在平衡理论中通常可以忽略,但它们对活性物质具有深远的、长期的影响。因此,活性物质的模型必须明确地处理边界,并具有适当的边界条件。(3)在有源系统中,粒子尺度上的能量输入不断级联到更大的尺度上,这使得很难确定一个可以用来简化理论描述的尺度分离。因此,需要将微尺度力产生单元与集体行为的大尺度描述联系起来的模型。支持的研究将在数学方法与理论和实验软物质物理之间的接口为本科生和研究生提供有价值的科学,技术,工程和数学(STEM)培训。研究活动包括训练计划,旨在让不同的学生参与计算研究,并向专业和非专业受众提供科学交流方面的指导。该奖项还支持利用活跃物质模拟和实验中产生的壮观视觉效果来激发外行观众对科学研究兴趣的公共宣传项目。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Active liquid crystals powered by force-sensing DNA-motor clusters
- DOI:10.1073/pnas.2102873118
- 发表时间:2021-06
- 期刊:
- 影响因子:0
- 作者:Alexandra M. Tayar;M. Hagan;Z. Dogic
- 通讯作者:Alexandra M. Tayar;M. Hagan;Z. Dogic
Steady states of active Brownian particles interacting with boundaries
- DOI:10.1088/1742-5468/ac42cf
- 发表时间:2021-09
- 期刊:
- 影响因子:0
- 作者:Caleb G. Wagner;M. Hagan;A. Baskaran
- 通讯作者:Caleb G. Wagner;M. Hagan;A. Baskaran
Multiscale Microtubule Dynamics in Active Nematics
- DOI:10.1103/physrevlett.127.148001
- 发表时间:2021-09-27
- 期刊:
- 影响因子:8.6
- 作者:Lemma, Linnea M.;Norton, Michael M.;Dogic, Zvonimir
- 通讯作者:Dogic, Zvonimir
From disks to channels: dynamics of active nematics confined to an annulus
从圆盘到通道:局限于环面的活性向列动力学
- DOI:10.1039/d3sm00477e
- 发表时间:2023
- 期刊:
- 影响因子:3.4
- 作者:Joshi, Chaitanya;Zarei, Zahra;Norton, Michael M.;Fraden, Seth;Baskaran, Aparna;Hagan, Michael F.
- 通讯作者:Hagan, Michael F.
Statistical properties of a tangentially driven active filament
切向驱动的有源灯丝的统计特性
- DOI:10.1088/1742-5468/ab6097
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Peterson, Matthew S;Hagan, Michael F;Baskaran, Aparna
- 通讯作者:Baskaran, Aparna
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Hagan其他文献
Consensus Quality Measures and Dose Constraints for Breast Cancer From the Veterans Affairs Radiation Oncology Quality Surveillance Program and American Society for Radiation Oncology Expert Panel
- DOI:
10.1016/j.prro.2022.08.016 - 发表时间:
2023-05-01 - 期刊:
- 影响因子:
- 作者:
Lindsay L. Puckett;Divya Kodali;Abhishek A. Solanki;John H. Park;Evangelia Katsoulakis;Randi Kudner;Rishabh Kapoor;Ksenija Kujundzic;Christina Hunter Chapman;Michael Hagan;Maria Kelly;Jatinder Palta;Jose G. Bazan;Anthony Dragun;Christine Fisher;Bruce Haffty;Elizabeth Nichols;Chirag Shah;Mohammad Salehpour;Samantha Dawes - 通讯作者:
Samantha Dawes
Contraceptive and noncontraceptive benefits of the LNG-IUS in a vertically integrated HMO
- DOI:
10.1016/j.contraception.2008.01.019 - 发表时间:
2008-07-01 - 期刊:
- 影响因子:
- 作者:
Sarah K. Hendlish;Nathalie C. Horowicz-Mehler;Diana I. Brixner;Lee S. Stern;John J. Doyle;Joanne Chang;Michael Hagan - 通讯作者:
Michael Hagan
Consensus Quality Measures and Dose Constraints for Rectal Cancer From the Veterans Affairs Radiation Oncology Quality Surveillance Program and American Society for Radiation Oncology (ASTRO) Expert Panel
- DOI:
10.1016/j.prro.2022.05.005 - 发表时间:
2022-09-01 - 期刊:
- 影响因子:
- 作者:
John Park;Bhanu Prasad Venkatesulu;Ksenija Kujundzic;Evangelia Katsoulakis;Abhishek A. Solanki;Lindsay L. Puckett;Rishabh Kapoor;Christina H. Chapman;Michael Hagan;Maria D. Kelly;Jatinder Palta;Jonathan B. Ashman;Dustin Jacqmin;Lisa A. Kachnic;Bruce D. Minsky;Jeffrey Olsen;Ann C. Raldow;Jennifer Y. Wo;Samantha Dawes;Emily Wilson - 通讯作者:
Emily Wilson
Antibodies against the fibrin beta-chain amino-terminus detect active canine venous thrombi.
抗纤维蛋白β链氨基末端的抗体可检测活跃的犬静脉血栓。
- DOI:
- 发表时间:
1997 - 期刊:
- 影响因子:37.8
- 作者:
Timothy A. Morris;J. Marsh;R. Konopka;C. Pedersen;P. Chiles;Roberto Fagnani;Michael Hagan;Kenneth M. Moser - 通讯作者:
Kenneth M. Moser
099 - Clinical outcomes of a new foot-worn non-invasive biomechanical intervention compared to traditional physical therapy in patients with chronic low back pain. A Randomized Clinical Trial
099 - 慢性下腰痛患者中,新型穿戴式足部无创生物力学干预与传统物理治疗的临床疗效对比:一项随机临床试验
- DOI:
10.1016/j.joca.2025.02.103 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:9.000
- 作者:
Ratnakar Veeramachaneni;Ganit Segal;Andrew Gitkind;Sandeep Yerra;Michael Hagan;Asude Hasanoglu;Natnael Aklile;Hannah Kareff;Derek Ho;Matthew N. Bartels - 通讯作者:
Matthew N. Bartels
Michael Hagan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Hagan', 18)}}的其他基金
Collaborative Research: DMREF: Synthetic machines from feedback-controlled active matter
合作研究:DMREF:反馈控制活性物质的合成机器
- 批准号:
2324195 - 财政年份:2023
- 资助金额:
$ 39.6万 - 项目类别:
Standard Grant
Computational modeling to determine strategies to optimize self-limited assembly
计算建模以确定优化自限性装配的策略
- 批准号:
2309635 - 财政年份:2023
- 资助金额:
$ 39.6万 - 项目类别:
Continuing Grant
Conference: 2023 Physical Virology GRC and GRS
会议:2023 物理病毒学 GRC 和 GRS
- 批准号:
2233905 - 财政年份:2022
- 资助金额:
$ 39.6万 - 项目类别:
Standard Grant
INSPIRE: Memory Storage by Variable-size Stable Structures
INSPIRE:可变大小稳定结构的内存存储
- 批准号:
1526941 - 财政年份:2015
- 资助金额:
$ 39.6万 - 项目类别:
Continuing Grant
Proposal for Conference/Workshop Support for CECAM workshop: Self-assembly: from fundamental Principles to Design Rules for Experiment; Lausanne, Switzerland; March 1 - 3, 2013
CECAM 研讨会会议/研讨会支持提案:自组装:从基本原理到实验设计规则;
- 批准号:
1256701 - 财政年份:2012
- 资助金额:
$ 39.6万 - 项目类别:
Standard Grant
相似海外基金
Computational and theoretical fluid mechanics modeling for transport in dense tumors
致密肿瘤中运输的计算和理论流体力学模型
- 批准号:
10816198 - 财政年份:2022
- 资助金额:
$ 39.6万 - 项目类别:
Theoretical-Computational Framework for Modeling of Composite Materials with Thin Coatings and Two-Dimensional Reinforcements
薄涂层和二维增强复合材料建模的理论计算框架
- 批准号:
2112894 - 财政年份:2021
- 资助金额:
$ 39.6万 - 项目类别:
Standard Grant
Theoretical and Computational Modeling of Supercoiling, Topology, and Active Fluctuations in Chromosomal Organization and Dynamics
染色体组织和动力学中超螺旋、拓扑和主动波动的理论和计算模型
- 批准号:
2102726 - 财政年份:2021
- 资助金额:
$ 39.6万 - 项目类别:
Standard Grant
Response of Soft Colloids and Macromolecules to Crowded Environments: Theoretical and Computational Modeling
软胶体和大分子对拥挤环境的响应:理论和计算模型
- 批准号:
1928073 - 财政年份:2020
- 资助金额:
$ 39.6万 - 项目类别:
Continuing Grant
Computational and theoretical fluid mechanics modeling for transport in dense tumors
致密肿瘤中运输的计算和理论流体力学模型
- 批准号:
10817669 - 财政年份:2016
- 资助金额:
$ 39.6万 - 项目类别:
CAREER: Bridging the gap between theoretical and experimental self-assembly through computational modeling
职业:通过计算建模弥合理论和实验自组装之间的差距
- 批准号:
1553166 - 财政年份:2016
- 资助金额:
$ 39.6万 - 项目类别:
Continuing Grant
Theoretical and computational modeling of amyloid aggregation
淀粉样蛋白聚集的理论和计算模型
- 批准号:
8904684 - 财政年份:2014
- 资助金额:
$ 39.6万 - 项目类别:
Theoretical and computational modeling of amyloid aggregation
淀粉样蛋白聚集的理论和计算模型
- 批准号:
8761359 - 财政年份:2014
- 资助金额:
$ 39.6万 - 项目类别:
Theoretical and Computational Modeling of Soft Materials
软材料的理论和计算模型
- 批准号:
1106331 - 财政年份:2011
- 资助金额:
$ 39.6万 - 项目类别:
Standard Grant
Theoretical Analysis of Enzymatic Functions based on Hybrid-Computational Modeling
基于混合计算模型的酶功能理论分析
- 批准号:
19750021 - 财政年份:2007
- 资助金额:
$ 39.6万 - 项目类别:
Grant-in-Aid for Young Scientists (B)