Theoretical-Computational Framework for Modeling of Composite Materials with Thin Coatings and Two-Dimensional Reinforcements

薄涂层和二维增强复合材料建模的理论计算框架

基本信息

  • 批准号:
    2112894
  • 负责人:
  • 金额:
    $ 30.17万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2026-03-31
  • 项目状态:
    未结题

项目摘要

Thin coatings and two-dimensional reinforcing sheets are key elements of modern composite materials. They are used for prevention of damage, increase in durability, and enhancement in performance of components and structures in aerospace, automotive, biomedical, and many other industries that are of particular importance to the US economy. For example, the use of graphene nanoplatelets or polymer nano coatings in ceramics or metals produces lightweight composites with superior mechanical strength that are indispensable for fabrication of portable electronic devices, medical implants, and solar cells. Despite remarkable progress made in the last decade, however, accurate predictive modeling of materials with thin and ultrathin layers remains a challenging task. This award supports research that will deliver an efficient theoretical and computational framework that will potentially facilitate simulation-based design and optimization of composite material systems and significantly enhance the accuracy of their analysis. In addition, the project will support efforts to attract and inspire students to pursue research in simulation-based engineering and train graduate and undergraduate students in the cross-disciplinary areas of composite mechanics, surface science, and computational methods. It will also leverage institutional programs to support education and outreach to students at all levels, with special focus on women and low-income students. Recent advances in surface chemistry and related technological developments enable the design and creation of composite materials with unprecedented mechanical properties. Of particular interest are composites with thin coatings or two-dimensional reinforcements. The objective of this research is to develop novel methodologies to model the coatings and/or reinforcements through interfaces of zero thickness and specially designed jump conditions. The research approach will consist of formulating novel higher-order interface models, developing new classification of interface morphologies, and establishing their connections with lower-dimensional plate and shell theories. The interface models will be integrated into new finite element and boundary element formulations characterized by high-regularity basis functions. Lastly, these implementations will be validated with the help of experimental data available from collaborators on real-world problems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
薄涂层和二维增强板是现代复合材料的关键要素。它们用于防止损坏,增加耐用性,并提高航空航天,汽车,生物医学和许多其他对美国经济特别重要的行业的部件和结构的性能。例如,在陶瓷或金属中使用石墨烯纳米片或聚合物纳米涂层可以生产具有上级机械强度的轻质复合材料,这对于制造便携式电子设备、医疗植入物和太阳能电池来说是不可或缺的。然而,尽管过去十年取得了显着进展,但对薄层和超薄层材料的准确预测建模仍然是一项具有挑战性的任务。该奖项支持的研究将提供一个有效的理论和计算框架,这将可能促进基于模拟的设计和复合材料系统的优化,并显着提高其分析的准确性。此外,该项目将支持努力吸引和激励学生从事基于模拟的工程研究,并在复合材料力学,表面科学和计算方法的跨学科领域培养研究生和本科生。它还将利用机构方案支持教育和对各级学生的宣传,特别关注妇女和低收入学生。 表面化学和相关技术发展的最新进展使设计和创造具有前所未有的机械性能的复合材料成为可能。特别感兴趣的是具有薄涂层或二维增强的复合材料。本研究的目的是开发新的方法来模拟涂层和/或钢筋通过界面的零厚度和专门设计的跳跃条件。研究方法将包括制定新的高阶界面模型,开发新的界面形态分类,并建立它们与低维板壳理论的联系。界面模型将被集成到新的有限元和边界元公式,其特征在于高正则基函数。最后,这些实现将在合作者提供的真实问题实验数据的帮助下进行验证。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Numerical solution of the two-dimensional Steigmann–Ogden model of material surface with a boundary
  • DOI:
    10.1016/j.physd.2022.133531
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Zemlyanova;S. Mogilevskaya;D. Schillinger
  • 通讯作者:
    A. Zemlyanova;S. Mogilevskaya;D. Schillinger
Case study of the Bövik–Benvenistemethodology for imperfect interface modeling of two-dimensional elasticity problemswith thin layers
Bövik-Benveniste 方法的案例研究,用于薄层二维弹性问题的不完美界面建模
Higher order imperfect interface models of conductive spherical interphase
导电球形界面的高阶不完善界面模型
  • DOI:
    10.1177/10812865221103223
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Kushch, Volodymyr I;Mogilevskaya, Sofia G
  • 通讯作者:
    Mogilevskaya, Sofia G
On modeling of elastic interface layers in particle composites
颗粒复合材料中弹性界面层的建模
Elastic disk with isoperimetric Cosserat coating
  • DOI:
    10.1016/j.euromechsol.2022.104568
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Matteo Gaibotti;D. Bigoni;S. Mogilevskaya
  • 通讯作者:
    Matteo Gaibotti;D. Bigoni;S. Mogilevskaya
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sofia Mogilevskaya其他文献

Sofia Mogilevskaya的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CRII: OAC: A Multi-fidelity Computational Framework for Discovering Governing Equations Under Uncertainty
CRII:OAC:用于发现不确定性下控制方程的多保真度计算框架
  • 批准号:
    2348495
  • 财政年份:
    2024
  • 资助金额:
    $ 30.17万
  • 项目类别:
    Standard Grant
A Neural and Computational Framework of the Effort Paradox
努力悖论的神经和计算框架
  • 批准号:
    EP/Y014561/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.17万
  • 项目类别:
    Research Grant
CAREER: A multi-scale and hierarchical computational framework to model III-nitride devices operating in the near-terahertz regime
职业:多尺度和分层计算框架,用于模拟在近太赫兹区域运行的 III 族氮化物器件
  • 批准号:
    2237663
  • 财政年份:
    2023
  • 资助金额:
    $ 30.17万
  • 项目类别:
    Continuing Grant
Developing an Experimental and Computational Framework for Studying Neural Representations of Tactile Motion on the Hand
开发用于研究手部触觉运动神经表征的实验和计算框架
  • 批准号:
    10732095
  • 财政年份:
    2023
  • 资助金额:
    $ 30.17万
  • 项目类别:
CRII: OAC: A Computational Framework for Studying Transport Phenomena in Complex Networks: From Biological Towards Sustainable and Resilient Engineering Networks
CRII:OAC:研究复杂网络中传输现象的计算框架:从生物网络到可持续和弹性工程网络
  • 批准号:
    2349122
  • 财政年份:
    2023
  • 资助金额:
    $ 30.17万
  • 项目类别:
    Standard Grant
Alternative protein sources: growing the next generation computational modelling framework
替代蛋白质来源:发展下一代计算模型框架
  • 批准号:
    2886049
  • 财政年份:
    2023
  • 资助金额:
    $ 30.17万
  • 项目类别:
    Studentship
A New Computational Framework for Superior Image Reconstruction in Limited Data Quantitative Photoacoustic Tomography
有限数据定量光声断层扫描中卓越图像重建的新计算框架
  • 批准号:
    2309491
  • 财政年份:
    2023
  • 资助金额:
    $ 30.17万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: A multi-fidelity computational framework for vascular mechanobiology in SimVascular
合作研究:框架:SimVasulous 中血管力学生物学的多保真度计算框架
  • 批准号:
    2310910
  • 财政年份:
    2023
  • 资助金额:
    $ 30.17万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: A multi-fidelity computational framework for vascular mechanobiology in SimVascular
合作研究:框架:SimVasulous 中血管力学生物学的多保真度计算框架
  • 批准号:
    2310909
  • 财政年份:
    2023
  • 资助金额:
    $ 30.17万
  • 项目类别:
    Standard Grant
CAREER: Probabilistic Framework for Self-Supervised, Data-Driven Computational Imaging
职业:自我监督、数据驱动的计算成像的概率框架
  • 批准号:
    2236796
  • 财政年份:
    2023
  • 资助金额:
    $ 30.17万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了