Theoretical and Computational Modeling of Supercoiling, Topology, and Active Fluctuations in Chromosomal Organization and Dynamics
染色体组织和动力学中超螺旋、拓扑和主动波动的理论和计算模型
基本信息
- 批准号:2102726
- 负责人:
- 金额:$ 50.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research program establishes new methods to analyze and predict chromosomal organization and dynamics in living cells. Furthermore, the foundational theoretical development in this research program is transferable to a broad range of biological processes that are driven by non-equilibrium active forces. In addition, the specific biological processes that the PI will tackle provide new fundamental insight in top phenomena that are central to our understanding of chromosomal organization and function. Reproduction and epigenetic regulation represent two of the most critical defining features in human biology. This research program brings quantitative physical insight into the molecular origins of how we reproduce and how we establish and maintain our multi-cellular programming, providing fundamental insight and predictive tools for interpreting experimental measurements. This research program is defined by several key deliverables that provide educational resources that impact a range of communities. The educational program includes the establishment of LABScI (Laboratory Activities for Broadened Scientific Instruction) to develop and implement laboratory science and engineering teaching modules for high school students that are being treated for childhood cancer and other illnesses. The LABScI program engages undergraduate and graduate students to develop the teaching modules, resulting in an exciting opportunity for students to enrich their educational experience. The PI will partner with the School of Education at Stanford University to expand the LACScI program and develop educational materials that effectively integrate online education with hands-on laboratory activities. New software development in the PI's lab aims to consolidate computational approaches in physics-based modeling, genomic and bioinformatic analysis, and data-science methods. Coupled to the software development is an effort to provide educational resources that aid the implementation of these disparate approaches. New efforts in education aim to demonstrate how to effectively integrate physics-based and data-science approaches as complementary tools for biological analysis.The instructions for all biological processes in human cells are contained within chromosomes whose total DNA length is roughly one meter. These massive DNA polymers must be capable of organizing and rearranging in response to cell-cycle events that are central to biological function. The PIs existing theory of polymer dynamics provides a starting point for describing chromosomal behavior, but a range of distinct biophysical mechanisms contribute to the behavior in living cells that are not currently captured within the existing theoretical models. Numerous experimental observations demonstrate that chromosomal organization and dynamics are dramatically influenced by enzymes that manipulate DNA twist and supercoiling, mitigate entanglements and knots, and contribute active biological forces. This research program will establish a theoretical and computational framework for predicting and analyzing these critical biophysical drivers of chromosomal behavior. In establishing theory that is transferable to a broad range of biological processes, the PI will focus on the following three key cell-cycle events: pairing of homologous chromosomes during meiosis, introduction of twist and supercoiling during RNA transcription, and the establishment of chromosome territories after cell division. Within this program, the PI will tackle one of the prevailing challenges in establishing a physical framework for living systems—establishing a unified predictive theory for non-equilibrium matter. In this effort, he will develop a new theory of active-Brownian matter that provides a clear pathway for prediction of the role of transient enzymatic fluctuations in driving biological processes. This theoretical approach reveals a prevailing concept—the time-dependent temperature—that serves as a consolidating framework for capturing non-equilibrium behavior in living bio-logical systems, and will exploit this theoretical approach in specific problems that are central to the understanding of chromosomal biophysics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该研究计划建立了分析和预测活细胞中染色体组织和动力学的新方法。 此外,该研究计划的基础理论发展可转移到由非平衡主动力驱动的广泛的生物过程。 此外,PI将处理的特定生物过程为我们理解染色体组织和功能的核心现象提供了新的基本见解。 生殖和表观遗传调控是人类生物学中两个最重要的定义特征。 该研究计划为我们如何繁殖以及如何建立和维持我们的多细胞编程的分子起源带来了定量物理见解,为解释实验测量提供了基本的见解和预测工具。该研究计划由几个关键的可交付成果定义,这些成果提供了影响一系列社区的教育资源。教育计划包括建立LABScI(扩大科学教学实验室活动),为正在接受儿童癌症和其他疾病治疗的高中生开发和实施实验室科学和工程教学模块。LABScI计划让本科生和研究生开发教学模块,为学生提供丰富教育经验的令人兴奋的机会。PI将与斯坦福大学教育学院合作,扩大LACScI计划,并开发有效整合在线教育与动手实验室活动的教育材料。PI实验室的新软件开发旨在巩固基于物理建模,基因组和生物信息学分析以及数据科学方法的计算方法。 与软件开发相结合的是提供教育资源的努力,这些教育资源有助于实现这些不同的方法。 在教育方面的新努力旨在展示如何有效地整合基于物理学和数据科学的方法,作为生物分析的补充工具。人类细胞中所有生物过程的指令都包含在染色体中,染色体的DNA总长度约为一米。 这些大量的DNA聚合物必须能够组织和重新排列,以响应细胞周期事件,这是生物功能的核心。PI现有的聚合物动力学理论为描述染色体行为提供了一个起点,但一系列不同的生物物理机制有助于活细胞中的行为,这些行为目前尚未在现有的理论模型中捕获。 大量的实验观察表明,染色体的组织和动力学显着影响的酶,操纵DNA扭曲和超螺旋,减轻纠缠和结,并有助于积极的生物力。该研究计划将建立一个理论和计算框架,用于预测和分析染色体行为的这些关键生物物理驱动因素。 在建立可转移到广泛的生物过程的理论时,PI将专注于以下三个关键的细胞周期事件:减数分裂期间同源染色体的配对,RNA转录期间扭曲和超螺旋的引入,以及细胞分裂后染色体区域的建立。 在这个计划中,PI将解决建立生命系统物理框架的普遍挑战之一-为非平衡物质建立统一的预测理论。 在这项工作中,他将开发一种新的活性布朗物质理论,该理论为预测瞬时酶波动在驱动生物过程中的作用提供了明确的途径。 这种理论方法揭示了一个流行的概念-时间依赖的温度-作为一个巩固的框架,捕捉非平衡行为在生活的生物系统,该奖项反映了NSF的法定使命,并被认为值得通过利用基金会的智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Spakowitz其他文献
Long-Range Structural Changes in the Meiotic Nucleus Revealed by Changes in Stress Communication Along the Chromosome
- DOI:
10.1016/j.bpj.2017.11.212 - 发表时间:
2018-02-02 - 期刊:
- 影响因子:
- 作者:
Trent Newman;Bruno G. Beltran;James McGehee;Cori Cahoon;Daniel Elnatan;Daniel Chu;Sean Burgess;Andrew Spakowitz - 通讯作者:
Andrew Spakowitz
A Polymer Physics Model for Epigenetic Control of Chromatin Compaction
- DOI:
10.1016/j.bpj.2017.11.3080 - 发表时间:
2018-02-02 - 期刊:
- 影响因子:
- 作者:
Quinn MacPherson;Sarah Sandholtz;Andrew Spakowitz - 通讯作者:
Andrew Spakowitz
Physical Modeling of the Spreading and Maintenance of Epigenetic Modifications through DNA Looping and Condensation
- DOI:
10.1016/j.bpj.2017.11.3191 - 发表时间:
2018-02-02 - 期刊:
- 影响因子:
- 作者:
Sarah Sandholtz;Quinn MacPherson;Andrew Spakowitz - 通讯作者:
Andrew Spakowitz
Andrew Spakowitz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Spakowitz', 18)}}的其他基金
Polymer Physics Across Scales: Bridging Atomistic and Coarse-Grained Polymer Models
跨尺度的聚合物物理:桥接原子和粗粒聚合物模型
- 批准号:
1855334 - 财政年份:2019
- 资助金额:
$ 50.13万 - 项目类别:
Continuing Grant
Theoretical Modeling of Protein-Driven Chromosomal Dynamics and Biological Function
蛋白质驱动的染色体动力学和生物功能的理论模型
- 批准号:
1707751 - 财政年份:2017
- 资助金额:
$ 50.13万 - 项目类别:
Continuing Grant
UNS: Microstructural determinants of ion transport in ion exchange fuel cell membranes
UNS:离子交换燃料电池膜中离子传输的微观结构决定因素
- 批准号:
1511373 - 财政年份:2015
- 资助金额:
$ 50.13万 - 项目类别:
Standard Grant
Revealing the Physical Principles Underlying Epigenetic Regulation Using Theory, Simulation, and Experiment
利用理论、模拟和实验揭示表观遗传调控的物理原理
- 批准号:
1305516 - 财政年份:2013
- 资助金额:
$ 50.13万 - 项目类别:
Continuing Grant
CAREER: Target-Site Search of DNA-Binding Proteins
职业:DNA 结合蛋白的靶位点搜索
- 批准号:
0847050 - 财政年份:2009
- 资助金额:
$ 50.13万 - 项目类别:
Standard Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Computational and theoretical fluid mechanics modeling for transport in dense tumors
致密肿瘤中运输的计算和理论流体力学模型
- 批准号:
10816198 - 财政年份:2022
- 资助金额:
$ 50.13万 - 项目类别:
Theoretical-Computational Framework for Modeling of Composite Materials with Thin Coatings and Two-Dimensional Reinforcements
薄涂层和二维增强复合材料建模的理论计算框架
- 批准号:
2112894 - 财政年份:2021
- 资助金额:
$ 50.13万 - 项目类别:
Standard Grant
Response of Soft Colloids and Macromolecules to Crowded Environments: Theoretical and Computational Modeling
软胶体和大分子对拥挤环境的响应:理论和计算模型
- 批准号:
1928073 - 财政年份:2020
- 资助金额:
$ 50.13万 - 项目类别:
Continuing Grant
Computational and Theoretical Modeling of Active Nematics in 3D and Under Confinement
3D 和约束下主动向列相的计算和理论建模
- 批准号:
1855914 - 财政年份:2019
- 资助金额:
$ 50.13万 - 项目类别:
Continuing Grant
Computational and theoretical fluid mechanics modeling for transport in dense tumors
致密肿瘤中运输的计算和理论流体力学模型
- 批准号:
10817669 - 财政年份:2016
- 资助金额:
$ 50.13万 - 项目类别:
CAREER: Bridging the gap between theoretical and experimental self-assembly through computational modeling
职业:通过计算建模弥合理论和实验自组装之间的差距
- 批准号:
1553166 - 财政年份:2016
- 资助金额:
$ 50.13万 - 项目类别:
Continuing Grant
Theoretical and computational modeling of amyloid aggregation
淀粉样蛋白聚集的理论和计算模型
- 批准号:
8904684 - 财政年份:2014
- 资助金额:
$ 50.13万 - 项目类别:
Theoretical and computational modeling of amyloid aggregation
淀粉样蛋白聚集的理论和计算模型
- 批准号:
8761359 - 财政年份:2014
- 资助金额:
$ 50.13万 - 项目类别:
Theoretical and Computational Modeling of Soft Materials
软材料的理论和计算模型
- 批准号:
1106331 - 财政年份:2011
- 资助金额:
$ 50.13万 - 项目类别:
Standard Grant
Theoretical Analysis of Enzymatic Functions based on Hybrid-Computational Modeling
基于混合计算模型的酶功能理论分析
- 批准号:
19750021 - 财政年份:2007
- 资助金额:
$ 50.13万 - 项目类别:
Grant-in-Aid for Young Scientists (B)