Analytic Methods in Hydrodynamic and Wave Turbulence
流体动力学和波浪湍流的分析方法
基本信息
- 批准号:1900149
- 负责人:
- 金额:$ 20.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2022-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Turbulence is ubiquitous in nature, playing a fundamental role in a multitude of physical theories, from atmospheric and oceanic dynamics to the birth of stars. This project is dedicated to an investigation into hydrodynamic and wave turbulence, both of which, at the core predict cascades of energy. The principal aim of this supported research is to better understand these energy cascades. The project is divided into two projects: a study of non-uniqueness of weak solutions to equations arising in hydrodynamics, and a rigorous approach to the derivation of the kinetic wave equation in wave turbulence theory. The focus of the first project will be to utilize the theoretical tool of convex integration to build theoretical energy cascades in order to resolve long standing open problems related to weak solutions to the Navier-Stokes equations. The overarching goal of the second project will be to rigorously determine the validity of the kinetic wave equation which is theorized to predict turbulence phenomena in a host settings such as water waves, plasma physics and climate science. The project will draw on a diverse set of mathematical tools from analysis, number theory and statistical physics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
湍流在自然界中无处不在,从大气和海洋动力学到恒星的诞生,在许多物理理论中发挥着重要作用。该项目致力于研究水动力学和波浪湍流,两者的核心都是预测能量的级联。这项研究的主要目的是更好地了解这些能量级联。该项目分为两个项目:研究流体力学方程弱解的非唯一性,以及波浪湍流理论中动力波方程推导的严格方法。 第一个项目的重点将是利用凸积分的理论工具来建立理论能量级联,以解决与纳维-斯托克斯方程弱解有关的长期未决问题。第二个项目的首要目标是严格确定动力波方程的有效性,该方程被理论化以预测水波、等离子体物理学和气候科学等主机环境中的湍流现象。这个奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Heuristic Approach to Convex Integration for the Euler Equations
欧拉方程凸积分的启发式方法
- DOI:10.1007/978-3-030-54899-5_1
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Buckmaster, Tristan;Vicol, Vlad
- 通讯作者:Vicol, Vlad
Convex integration constructions in hydrodynamics
- DOI:10.1090/bull/1713
- 发表时间:2020-11
- 期刊:
- 影响因子:1.3
- 作者:T. Buckmaster;V. Vicol
- 通讯作者:T. Buckmaster;V. Vicol
On the kinetic wave turbulence description for NLS
NLS的动波湍流描述
- DOI:10.1090/qam/1554
- 发表时间:2020
- 期刊:
- 影响因子:0.8
- 作者:Buckmaster, T.;Germain, P.;Hani, Z.;Shatah, J.
- 通讯作者:Shatah, J.
Convex integration and phenomenologies in turbulence
- DOI:10.4171/emss/34
- 发表时间:2019-01-01
- 期刊:
- 影响因子:2.3
- 作者:Buckmaster, Tristan;Vicol, Vlad
- 通讯作者:Vicol, Vlad
Onset of the wave turbulence description of the longtime behavior of the nonlinear Schrödinger equation
非线性薛定谔方程长期行为的波湍流描述
- DOI:10.1007/s00222-021-01039-z
- 发表时间:2021
- 期刊:
- 影响因子:3.1
- 作者:Buckmaster, T.;Germain, P.;Hani, Z.;Shatah, J.
- 通讯作者:Shatah, J.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tristan Buckmaster其他文献
Tristan Buckmaster的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tristan Buckmaster', 18)}}的其他基金
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2244879 - 财政年份:2023
- 资助金额:
$ 20.07万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2403764 - 财政年份:2023
- 资助金额:
$ 20.07万 - 项目类别:
Standard Grant
Analytic Methods in Hydrodynamic and Wave Turbulence
流体动力学和波浪湍流的分析方法
- 批准号:
2242677 - 财政年份:2022
- 资助金额:
$ 20.07万 - 项目类别:
Continuing Grant
Analytic Methods in Hydrodynamic and Wave Turbulence
流体动力学和波浪湍流的分析方法
- 批准号:
1820764 - 财政年份:2017
- 资助金额:
$ 20.07万 - 项目类别:
Standard Grant
Analytic Methods in Hydrodynamic and Wave Turbulence
流体动力学和波浪湍流的分析方法
- 批准号:
1600868 - 财政年份:2016
- 资助金额:
$ 20.07万 - 项目类别:
Standard Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Impact of Urban Environmental Factors on Momentary Subjective Wellbeing (SWB) using Smartphone-Based Experience Sampling Methods
使用基于智能手机的体验采样方法研究城市环境因素对瞬时主观幸福感 (SWB) 的影响
- 批准号:
2750689 - 财政年份:2025
- 资助金额:
$ 20.07万 - 项目类别:
Studentship
Developing behavioural methods to assess pain in horses
开发评估马疼痛的行为方法
- 批准号:
2686844 - 财政年份:2025
- 资助金额:
$ 20.07万 - 项目类别:
Studentship
Population genomic methods for modelling bacterial pathogen evolution
用于模拟细菌病原体进化的群体基因组方法
- 批准号:
DE240100316 - 财政年份:2024
- 资助金额:
$ 20.07万 - 项目类别:
Discovery Early Career Researcher Award
Development and Translation Mass Spectrometry Methods to Determine BioMarkers for Parkinson's Disease and Comorbidities
确定帕金森病和合并症生物标志物的质谱方法的开发和转化
- 批准号:
2907463 - 财政年份:2024
- 资助金额:
$ 20.07万 - 项目类别:
Studentship
Non invasive methods to accelerate the development of injectable therapeutic depots
非侵入性方法加速注射治疗储库的开发
- 批准号:
EP/Z532976/1 - 财政年份:2024
- 资助金额:
$ 20.07万 - 项目类别:
Research Grant
Spectral embedding methods and subsequent inference tasks on dynamic multiplex graphs
动态多路复用图上的谱嵌入方法和后续推理任务
- 批准号:
EP/Y002113/1 - 财政年份:2024
- 资助金额:
$ 20.07万 - 项目类别:
Research Grant
CAREER: Nonlinear Dynamics of Exciton-Polarons in Two-Dimensional Metal Halides Probed by Quantum-Optical Methods
职业:通过量子光学方法探测二维金属卤化物中激子极化子的非线性动力学
- 批准号:
2338663 - 财政年份:2024
- 资助金额:
$ 20.07万 - 项目类别:
Continuing Grant
Conference: North American High Order Methods Con (NAHOMCon)
会议:北美高阶方法大会 (NAHOMCon)
- 批准号:
2333724 - 财政年份:2024
- 资助金额:
$ 20.07万 - 项目类别:
Standard Grant
REU Site: Computational Methods with applications in Materials Science
REU 网站:计算方法及其在材料科学中的应用
- 批准号:
2348712 - 财政年份:2024
- 资助金额:
$ 20.07万 - 项目类别:
Standard Grant
CAREER: New methods in curve counting
职业:曲线计数的新方法
- 批准号:
2422291 - 财政年份:2024
- 资助金额:
$ 20.07万 - 项目类别:
Continuing Grant